
Simulating Real-world Load
Patterns

…when playback just won’t cut it

Wayne Roseberry, Microsoft Corporation 



Background: Microsoft SharePoint

• Web-based application server, part of Microsoft Office
– Communication, issue tracking
– Document management, Simple workflow
– Enterprise search
– Business application integration
– Content management and publishing
– Web browser & rich GUI client integration, web service 

and REST api’s
• Original release 2001, current version Microsoft 

SharePoint 2010
• Fastest growing server product in Microsoft history



SharePoint Architecture

Content
Databases

Web 
Server

Web 
Server

Web 
Server

Web 
Server

Content
Databases

App. 
Server

App. 
Server

Application
Databases

Client 
app/browser

HTTP, SOAP, REST…



Background: Test Challenges

• Investigation in production is expensive, slow
• Which load patterns are typical and which are 

abnormal?
• Data samples are critical to performance and 

reliability
• Dynamic state makes playback testing 

ineffective



Test Challenge: Load patterns and data 
samples

• Extreme patterns find failures quickly, but are challenged 
for being unrealistic

• “Typical” patterns that mimic real usage are difficult to 
model, but are taken more seriously when they find 
failures

• Data sets on SharePoint are complex and dramatically 
affect the traffic pattern
– E.g. a large document library will have larger impact on 

enumerations and queries that invoke conflicting locks in the 
database

– E.g. very large documents will have higher cost on file 
manipulation actions

– E.g. large number of unique page requests cause thrashing on 
in-memory caches



Test Challenge: Dynamic State

• Playback:
– Record the exact HTTP traffic from a production sample, playback at a 

later time to the server as a test
• Dynamic state:

– Random or unique values in the response calculated at runtime 
(document id’s, security flags, session state) that must be preserved 
for follow up responses

– Necessary sequences of actions (e.g. check out file, check in file) that 
may get captured mid-sequence

Example: Security token to block one-click attack on write operations



Therefore…

• Tests Need to Be Smart
– A model of user activity, not a recording
– Product aware, specialized to product features, not 

generic and blind
• Tests Need to Be Adaptable

– System response will change, tests must respond to 
change

– System state will change over time, tests must be 
state aware and behave appropriately

• Tests Must Be Able To Play For Variable Length
– Different time span than original recording



What We Planned to Achieve

• Via tests predict performance and reliability flaws that 
manifest in production

• Find usage patterns from real-world that manifest bugs 
hard to find otherwise

• Simulate real-world traffic patterns to help prioritize 
bug fixes and set goals

• Create a regression suite for non-production problem 
investigation and fix validation

• Create a test lab environment to invent test 
methodologies for investigation and diagnosis

• Re-use our test solution to help customers with 
capacity planning and performance investigation



System Architecture



System Architecture

Get
Content



System Architecture
Copy Data And Map User permissions to Test Users



System Architecture

Analyze
Content
& Build
Traffic
Model



System Architecture

Convert Model
To Test Inputs



System Architecture

Visual
Studio
Custom
Web
Tests



System Architecture
Monitor 
Reliability
During Test



Real-world Sites
• Office team portal (http://office)

– 7,000 people, 7500 unique visitors per day
– Team collaboration on documents, lists, reports, schedules
– Seasonal workload based on Office team schedule
– 155 requests per second peak hourly load
– Large single document library for Office specifications and engineering documents

• Microsoft internal hosted collaboration (http://sharepoint)
– Profile

• Entire company, 100k + people, 80,000 unique visitors per day
• Team collaboration, varied workload
• World-wide use (mostly Redmond, USA)
• 304 requests per second peak hourly load

– Test changes
• Changes for privacy
• Subset of data, re-mapping load patterns

• Microsoft internal hosted personal sites (http://my)
– Profile

• 73,000 unique users per day
• Peak hour 93 requests per second
• Lots of automated access (RSS feeds, social updates in Outlook)

– Test Changes
• Personal sites map to real users, had to re-map to test users and permissions



Capacity Planning

Site From This Document Report name on website
Office Product Group Portal Departmental Collaboration
Microsoft IT Hosted Collaboration Portal Intranet Collaboration
Microsoft IT Hosted Personal Site Portal Social

•Same Workloads Used To Publish SharePoint Capacity Planning Guidance
Link to capacity Planning Material:
http://technet.microsoft.com/en-us/library/cc261716.aspx

•Load Test Kit Published for Customers
• Tool was re-packaged for external consumption and released to market
• Allows customer to sample their own load from existing systems and 

project hardware and configuration requirements to handle capacity



Defect Fix and Find Rates

Comparison of Simulated Load to Other Performance Test Methods
•Lower: Fix Rate by 14%, Won’t Fix 5%
•Higher: By Design 8%, Duplicate 15%, Not Repro 6%

Still more difficult to triage than component level performance tests

Comparable Bugs per tester: simulated run ~11 per tester (27 testers), other 
performance tests 12 per tester (1521 testers)



Limitations & Further Opportunities
• Production Systems Yielded Failures Not Found in Lab

– Beta 2 until ship – most performance bugs found in production
– We shipped with all in-production failures due to hardware/environmental failures

• Coverage Limitations
– More, different types of operations
– Probably biggest gap between in-lab reliability and in-production reliability

• Traffic Pattern Flattening v.s. Spiking
– Load test maps constant percentages rather than spikes (e.g. 58.4 rps ranged from ~35 - ~65 rps spikes)
– real-world system with 300 avg. RPS will range from 100-700 RPS on a minute-minute basis
– Analyze as clusters of requests rather than single requests? Will it yield more failures?

• Improve Efficiency of Execution
– Previous release, 2+ wks to build test environment every time (install, configure, upgrade data set, 

condition data)
– Started this release ~ 1 wk
– Got to 4 hours via automation
– Fast time to start key to using as a regression tool during project end game

• Large Return From Monitoring Investments
– Instrumentation, logging built into product, extended with tools
– Ping-based reliability measurement used in lab and production (availability, failure rate, latency percentile 

spread)
– Vast improvement on reproducibility, accounting for impact of discovered flaws, root cause investigation



Conclusions

• We proved that real-world simulation from 
traffic pattern models are feasible

• We proved that there is a valuable return on 
results in higher bug yields, better quality 
bugs and re-usability for customers

• Challenges still remain in increasing coverage, 
efficiency of execution and monitoring

• Investigation remains about value of achieving 
higher accuracy in simulation


