
21st Century Requirements Engineering: A Pragmatic Guide to
Best Practices

Erik Simmons, Intel Corporation

Requirements engineering is a core discipline to product development, whether an
organization is large or small; involved in market-driven products, IT development,
or contractual work; or using traditional or agile methods. There is no shortage of
books, papers and courses on requirements, but what really works, and where to
start?

In this session, we’ll examine some of the core questions that govern how much
detail is enough, which areas need it, and when to provide it – regardless of what
software life cycle you are using. In addition, we will cover some of the practices that
have proven most useful across projects of all types.

So, if you are confused about “agile requirements”, can’t find the right balance of
detail level vs. cost and deadlines in your requirements work, or just want to see
some broadly useful practices that you can start using immediately, stop by for the
discussion.

Erik Simmons works in the Corporate Platform Office at Intel Corporation, where
he is responsible for creation, implementation, and evolution of requirements
engineering practices and supports other corporate platform and product
initiatives. Erik’s professional interests include software development, decision
making, heuristics, development life cycles, systems engineering, risk, and
requirements engineering. He has made invited conference appearances in New
Zealand, Australia, England, Belgium, France, Germany, Switzerland, Finland,
Canada, and the US. Erik holds a Masters degree in mathematical modeling and a
Bachelors degree in applied mathematics from Humboldt State University, and
was appointed to the Clinical Faculty of Oregon Health Sciences University in 1991.

__

Copies may not be made or distributed for commercial use
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page i

21st -Century Requirements Engineering:

A Pragmatic Guide to Best Practices

Erik Simmons

PNSQC 2011

Version 1.0, 08/11

Copyright © 2011 Intel Corporation. All rights reserved. 2

hi!

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

1

Contents

Copyright © 2011 Intel Corporation. All rights reserved. 3

Introduction

• Fundamental Concepts

• The Setting and the Challenges

Detail Level and Timing Issues

Requirements Practices for Today’s Environment

• The Three-Circle Model

• Specification Basics

• The Easy Approach to Requirements Syntax (EARS)

• Planguage

• The Landing Zone

• Specification Quality Control (SQC)

Sources for More Information

Note: Third-party brands and names are the property of their respective owners

Introduction

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

2

Copyright © 2011 Intel Corporation. All rights reserved. 5

What is a Requirement?

A requirement is a statement of:

1. What a system must do (a system function)

2. How well the system must do what it does (a system quality

or performance level)

3. A known resource or design limitation (a constraint or

budget)

A requirement is anything that drives a design choice

More generally,

Copyright © 2011 Intel Corporation. All rights reserved. 6

The Purpose of Requirements

Requirements help establish a clear, common, and coherent
understanding of what the system must accomplish

Well written requirements drive product design, construction,
validation, documentation, support, and other activities

Clear: All statements

are unambiguous,

complete, and concise

Common: All

stakeholders share

the same

understanding

Coherent: All

statements are

consistent and form a

logical whole

Requirements are the foundation on which systems are built

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

3

Copyright © 2011 Intel Corporation. All rights reserved. 7

Requirements Engineering

Requirements Engineering is the systematic and repeatable use of

techniques for discovering, documenting, and maintaining a set of

requirements for a system or service.

Requirements Engineering Activities

Elicitation

Gathering

requirements

from

stakeholders

Analysis &
Validation

Assessing,

negotiating,

and ensuring

correctness

of

requirements

Specification

Creating the

written

requirements

specification

Verification

Assessing

requirements

for quality

Management

Maintaining

the integrity

and accuracy

of the

requirements

Current Challenges | Complexity and Pace

Copyright © 2011 Intel Corporation. All rights reserved. 8

We’ve solved most of the simple problems Problem Complexity

Solution Complexity
We’re not finding many simple solutions to

complex problems

Design Tool

Complexity

Multi-core, multi-threaded, distributed, cross-

platform…yikes

Organizational

Complexity

Larger, distributed software teams, more

cross-domain interactions and dependencies

Software Development

Process Complexity

This is a natural response to increasing

solution complexity

Market Forces
The expectations placed on teams have not

relaxed, even in the face of the other factors

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

4

Current Challenges | Choice and Change

Copyright © 2011 Intel Corporation. All rights reserved. 9

Today’s markets are more fluid than ever, and consumers are more
willing than ever to shift their thinking, spending, and brand loyalties

Companies must now innovate continuously, or risk loss of customer base to a

more innovative rival

• Traditional barriers between product types are falling and new

markets are emerging

• Usage models are evolving

• Shorter cycle times mean more threats to market-leading products

For example, think about how many ways music and video can be consumed

today

Focus on customer delight and the rapid delivery of value to end users

The Need for Agility

Copyright © 2011 Intel Corporation. All rights reserved. 10

Does Requirements Engineering Matter in an Agile World?

Yes! Complexity and pace mean we have define problem and solution, avoid

rework, and maximize reuse

But this can’t be “your grandfather’s requirements engineering” – 21st -

century requirements engineering must be different:

Less

Front-loaded, static, stand-alone

Dictatorial

Exhaustive, speculative

The question is: How much requirements engineering, and when?

More

Incremental, fluid, integrated

Collaborative, supportive

Just-enough, just-in-time

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

5

The Need for Abstraction & Hierarchy

Copyright © 2011 Intel Corporation. All rights reserved. 11

Complexity requires better ways to address various views and
subsets of a problem or solution

Aspect-oriented development and cross-cutting concerns are good

examples

The biggest value in today’s systems comes from emergent
behaviors, and is not found in any single component

Requirements engineering, done correctly in partnership with architecture

and design, can provide helpful abstraction and hierarchy

• What is it that is most valuable in your systems?

• Is that value found in a single component?

• Is it delivered by a single team?

Detail Level and Timing Issues

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

6

How Much Detail is Enough?

Copyright © 2011 Intel Corporation. All rights reserved. 13

The correct detail level, like the correct investment in requirements
activities overall, must balance risk and investment

Too much

risk

Too much

investment

Less detail More detail

Acceptable risk and
investment

The acceptable region of risk and investment differs by product
type and many other factors

How Much Detail is Enough?

Copyright © 2011 Intel Corporation. All rights reserved. 14

The correct level of detail in requirements depends on factors that

include:

• Precedented vs. unprecedented product

• Development team experience, size, and distribution

• Acceptable risk level during development

• Domain, organizational, and technical complexity

• Need for regulatory compliance

• Current location in the development life cycle

The requirements must guide the current activities of all team
members at an acceptable risk level

Requirements completeness is judged continually, based on the

changing needs of the project and team

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

7

How Much Detail is Enough?

Copyright © 2011 Intel Corporation. All rights reserved. 15

No requirements specification is ever truly complete

There isn’t enough time or resources available to write them all – and

you shouldn’t have to anyway…

Make a conscious decision on what NOT to write

Provide detail where it’s needed most: risky, unprecedented, or
complex features and usages

Writing hundreds of pages of documentation may feel like productivity,

but:

•If what gets documented is what everyone already understood,

what is the effect on project risk?

•Large specifications can lead to a false sense of security

BRUF Versus Agile

Copyright © 2011 Intel Corporation. All rights reserved. 16

Big Requirements Up Front (BRUF) involves asking stakeholders for
“all their requirements”, then “freezing” the requirements before
design and development begins

BRUF forces stakeholders to defensively protect their interests by stating

every possible requirement they can think of, even if it is unlikely they will

ever need some of them

It is unreasonable to expect people to foresee all the contingencies and

challenges up front

“Any attempt to formulate all possible requirements at the start of a

project will fail and would cause considerable delays.” Pahl and Beitz, Engineering

Design: A Systematic Approach

Make a conscious decision on WHEN to write what you do write

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

8

A Flexible Approach to Scope and Details

Copyright © 2011 Intel Corporation. All rights reserved. 17

1. Start by generating requirements that define the scope of the

system – full breadth, but minimum depth

2. Decide what not to write

3. Decide when to write what you will write

4. Create the necessary details at the right time, always using

business value and risk reduction as guides

5. Revisit steps 2 and 3 often based on what you learn as you

make progress and the requirements evolve

Iterative and incremental work in an agile environment

Regardless of what type of system you are building, use an
evolutionary approach to requirements engineering:

The Three-Circle Model

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

9

Three Fundamental Perspectives

Copyright © 2011 Intel Corporation. All rights reserved. 19

The best platforms and products…

business …are marketable and profitable

usage …are desirable, useful, and usable

technology …are manufacturable and consumable

The Three-Circle Model

Copyright © 2011 Intel Corporation. All rights reserved. 20

The three circles combine to create seven regions

Compelling,
integrated systems
are found in the
center, balancing all
three perspectives

technology

usage

business

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

10

Balanced System Development

Copyright © 2011 Intel Corporation. All rights reserved. 21

business

usage

Each new system presents its own challenges, as does the environment

surrounding the system, the experience of the development team, and

many other factors

Weighting business, usage, and technology perspectives according to these

factors makes sense; ignoring a perspective does not

Although the three circles in the model
are shown at the same size, there is a
need for balance, not necessarily
equality

We need to develop systems using a balanced, systematic approach

Two-Circle Relationships

Copyright © 2011 Intel Corporation. All rights reserved. 22

Value relates business and usage.

This interaction defines how usage contributes to market

share, competitive advantage, and positioning

Capability relates usage and technology.

This interaction defines the interplay between usage, platform

architecture, and supporting technologies

Ingredient relates technology and business.

This interaction defines how technologies drive profitability

and marketability

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

11

The Three-Circle Model Regions

Copyright © 2011 Intel Corporation. All rights reserved. 23

 Business

Value

Ingredient

Capability

Usage

Technology

Integrating

business, usage,

and technology

combines

ingredients to

provide a capability

that delivers value

System Emergence

Copyright © 2011 Intel Corporation. All rights reserved. 24

Systems emerge as business, usage,
and technology perspectives converge

Independence

Interface

Interaction

Instantiation

Integration
business

usage

technology

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

12

Specification Basics

Specification Basics

Copyright © 2011 Intel Corporation. All rights reserved. 26

•Use a template for requirements specification

•Move from unconstrained natural language to constrained natural
language to reduce ambiguity and improve completeness with minimal

effort

•Do not include design statements in the requirements unless they

are there as intentionally-imposed constraints

•Supplement natural language where needed with other

representations to improve comprehension and reduce ambiguity

These basic practices have a high return on investment:

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

13

Specification Basics, cont.

Copyright © 2011 Intel Corporation. All rights reserved. 27

•Quantify qualitative requirements so they are verifiable

•Define terms early and centrally to ensure accurate use throughout

the project

•Validate requirements with stakeholders frequently as a test of

understanding

•Rigorously review and inspect requirements to prevent defects and

maximize requirements quality

Attributes of a Good Requirement

Copyright © 2011 Intel Corporation. All rights reserved. 28

• Complete: A requirement is complete when it contains sufficient detail

for those that use it to guide their work

• Correct: A requirement is correct when it is error-free

• Concise: A requirement is concise when it contains just the necessary

information, expressed in as few words as possible

• Feasible: A requirement is feasible if there is at least one design and

implementation for it

• Necessary: A Requirement is necessary when it:

• Is included to be market competitive

• Can be traced to a stakeholder need

• Establishes a new product differentiator or usage model

• Is dictated by business strategy, roadmaps, or sustainability

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

14

Attributes of a Good Requirement

Copyright © 2011 Intel Corporation. All rights reserved. 29

• Prioritized: A requirement is prioritized when it is ranked or ordered

according to its importance

• Unambiguous: A requirement is unambiguous when it possesses a

single interpretation

• Verifiable: A requirement is verifiable if it can be proved that the

requirement was correctly implemented

• Consistent: A requirement is consistent when it does not conflict with

any other requirements at any level

• Traceable: A requirement is traceable if it is uniquely and persistently

identified with a Tag

Requirements vs. Design

Copyright © 2011 Intel Corporation. All rights reserved. 30

“Requirements are the what, design is the how…”

This is true – to a point, but the main difference between requirement and

design is one of perspective:

Build a media

center PC

Executive

management:

“A design to meet
financial goals”

Product development:

“My requirements for
this year”

How you look at a statement dictates whether it is a
requirement or a design

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

15

Requirements vs. Design

Copyright © 2011 Intel Corporation. All rights reserved. 31

Many products carry the majority of their specifications forward

from previous versions

If the system must be or act a certain way, say so…
If not, leave the people downstream as much freedom to

do their jobs as possible

It’s not whether a statement is a “requirement” or a

“design” that matters, but whether the statement places

appropriate constraints on the people that will read it

Using Imperatives

Copyright © 2011 Intel Corporation. All rights reserved. 32

Use Shall or Must to indicate requirements

Either imperative is fine, but there is a traditional use of the two
terms:

Shall – Used in functional requirements

Must – Used in quality and performance requirements

Should and May are not used for requirements, but may specify

design goals or options that will not be validated

Will and Responsible for are not used for requirements, but may be

used to refer to external systems or subsystems for informational

purposes

Use of Should or May in a requirement often points to a
missing trigger or condition

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

16

Negative Specification

Copyright © 2011 Intel Corporation. All rights reserved. 33

It is appropriate to state what the system shall not do, but

keep in mind that the system shall not do much more than

it shall do

• Use negative specification sparingly, for emphasis

• Don’t use negative specification for requirements that could be

stated in the positive

• Avoid double negatives altogether

NO: “Users shall not be prevented from deleting data they have entered”

YES: “The system shall allow users to delete data they have entered”

Writing Functional Requirements

Copyright © 2011 Intel Corporation. All rights reserved. 34

[Trigger] [Precondition] Actor Action [Object]

An excellent way to structure functional requirements is to use the

following generic syntax:

Example:

When an Order is shipped and Order Terms are not

“Prepaid”, the system shall create an Invoice.

• Trigger: When an Order is shipped

• Precondition: Order Terms are not “Prepaid”

• Actor: the system

• Action: create

• Object: an Invoice

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

17

Writing Functional Requirements: EARS

Copyright © 2011 Intel Corporation. All rights reserved. 35

A recent refinement of the generic syntax is the Easy Approach to
Requirements Syntax (EARS) that contains patterns for specific types of

functional requirements

Pattern Name Pattern

Ubiquitous The <system name> shall <system response>

Event-Driven WHEN <trigger> <optional precondition> the <system name> shall

<system response>

Unwanted

Behavior

IF <unwanted condition or event>, THEN the <system name> shall

<system response>

State-Driven WHILE <system state>, the <system name> shall <system

response>

Optional

Feature

WHERE <feature is included>, the <system name> shall <system

response>

Complex (combinations of the above patterns)

Examples of Functional Requirement Syntax

Copyright © 2011 Intel Corporation. All rights reserved. 36

The system shall allow the user to select a custom wallpaper for the display

from any of the image files stored on the device.

When a user commands installation of an Application that accesses

Communications Functions, the system shall prompt the user to

acknowledge the access and agree before continuing installation.

When the system detects the user’s face in proximity to the display while

the phone function is active and Speaker Mode is off, the system shall turn

off the display and deactivate the display’s touch sensitivity.

While in Standby, if the battery capacity falls below 5% remaining, the

system shall change the LED to flashing red.

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

18

Specifying Requirements Using Planguage

What is Planguage?

Copyright © 2011 Intel Corporation. All rights reserved. 38

Planguage is an informal, but structured, keyword-driven
planning language

It can be used to create all types of requirements

The name Planguage is a combination of the words Planning
and Language

Planguage is an example of a Constrained Natural Language

Planguage aids communication about complex ideas

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

19

Planguage

Copyright © 2011 Intel Corporation. All rights reserved. 39

Planguage provides a rich specification of requirements

that results in:

• Fewer omissions in requirements

• Reduced ambiguity and increased readability

• Early evidence of feasibility and testability

• Increased requirements reuse

• Effective priority management

• Better, easier decision making

Beyond requirements, Planguage has many additional uses
including success criteria, roadmaps, and design documents

Choosing Planguage Keywords

Copyright © 2011 Intel Corporation. All rights reserved. 40

Requirements generally fall into two categories based on the nature of
how they are measured:

Because of the way they are measured, qualities and performance
levels use some additional Planguage keywords

Requirements measured in Boolean terms as either present or

absent in the completed system

• This category includes system functions and constraints

Requirements measured on some scale or interval, as more or less

rather than present or absent

• This category includes system qualities and performance

levels, often also referred to as “non-functional requirements”

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

20

Basic Planguage Keywords for Any Requirement

Copyright © 2011 Intel Corporation. All rights reserved. 41

ID: A unique, persistent identifier (often system-assigned)

Requirement: The text that details the requirement itself

Rationale: The reasoning that justifies the requirement

Priority: A rating of priority (numeric, HML, etc.)

Priority Reason: A short description of the requirement’s claim on

scarce resources; why is it rated as it is?

Tags: A set of keywords or phrases useful for sorting and searching

Stakeholders: a person or organization that influences a system’s

requirements or is impacted by that system

Basic Planguage Keywords for Any Requirement, cont.

Copyright © 2011 Intel Corporation. All rights reserved. 42

Status: The status of the requirement (draft, committed, etc.)

Contact: The person who serves as a reference for the requirement

Author: The person that wrote the requirement

Revision: A version number for the statement

Date: The date of the most recent revision

Fuzzy concepts requiring more details: <fuzzy concept>

The source for any statement: 

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

21

A Simple Planguage Requirement

Copyright © 2011 Intel Corporation. All rights reserved. 43

ID: Invoice  Christine Walsh

Requirement: When an Order is shipped and Order Terms are not

“Prepaid”, the system shall create an Invoice.

Rationale: Task automation decreases error rate, reduces effort per

order. Meets corporate business principle for accounts receivable.

Priority: High. If not implemented, it will cause business process

reengineering and reduce program ROI by $400K per year.

Stakeholders: Shipping, finance

Contact: Atul Gupta

Author, Revision, Date: Julie English, rev 1.0, 5 Oct 05

Additional Keywords for Quality and Performance

Requirements

Copyright © 2011 Intel Corporation. All rights reserved. 44

Ambition: A description of the goal of the requirement (this replaces the

Requirement keyword used in functional requirements)

Scale: The scale of measure used to quantify the statement

Meter: The process or device used to establish location on a Scale

Minimum: The minimum level required to avoid political, financial, or other

type of failure

Target: The level at which good success can be claimed

Outstanding: A stretch goal if everything goes perfectly

Past: An expression of previous results for comparison

Trend: An historical range or extrapolation of data

Record: The best known achievement

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

22

Quantifying Learnability

Copyright © 2011 Intel Corporation. All rights reserved. 45

ID: Learnable C. Smith

Ambition: Make the system easy to learn  VP marketing

Rationale: Upcoming hiring reflected in business plans makes learnability for

order entry a critical success factor for new offices

Scale: Average time required for a Novice to complete a 1-item order using

only the online help system for assistance.

Meter: Measurements obtained on 100 Novices during user interface testing.

Minimum: No more than 7 minutes

Target: No more than 5 minutes

Outstanding: No more than 3 minutes

Past: 11 minutes  Recent site statistics

Defined: Novice: A person with less than 6 months experience with Web

applications and no prior exposure to our Website.

Using Qualifiers

Copyright © 2011 Intel Corporation. All rights reserved. 46

Qualifiers are expressed within square braces [] and may be used
with any keyword

• They allow for conditions and events to be described, adding

specificity to a requirement

• They most often contain data on where, when, etc.

Past: [1st quarter average, all orders, all regions, new customers only]

11 minutes  Recent site statistics

Past: 11 minutes  Recent site statistics

We could write

Example: Instead of

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

23

The Landing Zone

The Landing Zone

Copyright © 2011 Intel Corporation. All rights reserved. 48

A Landing Zone is a table that defines a “region” of success for a
product or project

The rows of the table contain the subset of requirements that directly

define success or failure (not all the requirements)

The columns of the table contain a range of performance levels;

usually, a Landing Zone covers the range between great success

(Outstanding) and failure avoidance (Minimum)

Landing Zones can be used in agile development to help define success

of an iteration or Scrum sprint

 Landing Zones focus attention on what will create success

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

24

Example Landing Zone

Copyright © 2011 Intel Corporation. All rights reserved. 49

Requirement Outstanding Target Minimum

Retail On Shelf Nov 15th Nov. 22nd Dec 1st

Manufacturing Cost $9.00 $10.00 $11.50

Peak Project

Headcount

250 350 400

Markets at Launch US, APAC, EMEA US, APAC US, APAC

Design Wins at

Launch

40+ 30+ 20+

Total First Year

Volume

125K 110K 95K

Landing Zone Usage

Copyright © 2011 Intel Corporation. All rights reserved. 50

Landing Zones are useful for several things:

• Gain explicit consensus at the start of a project on the

definition of success

• Quantify the achievement levels required as an input to

feasibility and risk analysis

• Drive tradeoff discussions and decision making throughout the

project

• Monitor and communicate product attribute status to decision

forums and management during development

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

25

Landing Zone Usage

Copyright © 2011 Intel Corporation. All rights reserved. 51

Decisions that do not violate any row of the LZ are made by the
team as a normal part of their work

•So long as the team meets all LZ rows, that is success

Any decision that would cause any LZ row to be violated
requires ratification from a higher authority

•This would include falling below Minimum or a decision to

pursue something beyond Outstanding

Landing Zones can be created for platforms, components,
service offerings, user experiences, projects, etc.

Landing Zones help clarify decision authority for a team:

Landing Zone Variants

Copyright © 2011 Intel Corporation. All rights reserved. 52

Requirement Target Minimum Kill Switch

Requirement Outstanding Target Minimum Commit

One Landing Zone variant adds a fourth column to monitor the level that

the engineering team has committed to deliver:

Another version drops the Outstanding level and replaces it with a Kill

Switch level that, if reached, triggers a review meeting to consider

stopping the project:

Customize Landing Zone format and content to meet your needs

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

26

Placing Functions in a Landing Zone

Copyright © 2011 Intel Corporation. All rights reserved. 53

Landing Zone rows typically represent qualities and performance

requirements that are measured across Minimum, Target, and

Outstanding

Functions do not fit this pattern, but can be included in a Landing

Zone by placement in a single row, where Minimum – Outstanding

show different lists of functions:

Requirement Outstanding Target Minimum

Retail On Shelf Nov 15th Nov. 22nd Dec 1st

Functions Target + HTML5

support

Min +

Quad monitor,

4G

Dual monitor

support, 3G

Specification Quality Control

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

27

Defect Removal Cost

Relative to Phase Located

Copyright © 2011 Intel Corporation. All rights reserved. 55

Source: NASA data, 2006

0

50

100

150

200

250

300

350

400

Requirements Design Code Test Integration Operation

C
o

st
 F

ac
to

r

Phase Located

Requirements

Design

Code

Test

Integration

Phase Injected

What’s Wrong With My Requirements?

Copyright © 2011 Intel Corporation. All rights reserved. 56

System/Heat sink fans must maintain adequate airflow for

CPU and system cooling while providing the quietest

operation possible.

See anything wrong?...

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

28

A Lot is Wrong, Actually…

Copyright © 2011 Intel Corporation. All rights reserved. 57

System/Heat sink fans must maintain adequate airflow for

CPU and system cooling while providing the quietest

operation possible.

Design
Multiple

requirements

Multiple

requirements

Weak

words
Under-

specification

Missing data: Source, status, rationale, priority, contact, etc.

Not verifiable as written

Not

traceable

And, or?

Peer Review Methods | Pros and Cons

Copyright © 2011 Intel Corporation. All rights reserved. 58

Pros Cons

Informal
Review

• Flexible

• Least threatening

• Finds fewer defects than other

types

• Variable, inconsistent results

Walkthrough • More systematic than

reviews

• Identifies defects reviews

miss

• May lack follow-up

• More time intensive and

inconvenient than reviews

Inspection • Most defects located

• Controlled, repeatable

• Industry proven practice

• Intimidating to some

• Requires training

• Can be too much effort without

sampling

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

29

An Optimal Approach

Copyright © 2011 Intel Corporation. All rights reserved. 59

• Emphasize defect prevention and organizational learning

• Limit participant investment of time and energy to

manageable levels

• Address the unique needs of each author and project

• Be suitable for all types and sizes of specification

• Rely on objective definitions and standards, not opinions

• Provide relevant, understandable metrics and indicators

An optimal requirements verification process would:

The Answer: Specification Quality Control

Copyright © 2011 Intel Corporation. All rights reserved. 60

Specification Quality Control (SQC) is a method for ensuring
specifications meet established quality goals according to objective,

measured standards.

Specification Quality Control emphasizes:

• Cost and TTM reduction

• Defect prevention

• Resource efficiency

• Early learning

• Author confidentiality

• Quantified specification quality

Specification: Any representation (electronic or otherwise) of a requirement,

constraint, design idea, plan, etc.

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

30

The Specification Quality Control Process

Copyright © 2011 Intel Corporation. All rights reserved. 61

Specification Completeness

0%

(Rev 0)

100%

(Rev 1)

Initial

Review

Additional Reviews

(Author’s Discretion)

Specification

Quality

Assessment

…

50%

Why Specification Quality Control Works

Copyright © 2011 Intel Corporation. All rights reserved. 62

• Early review allows an author to get timely, independent feedback

on individual tendencies and errors

• By applying early learning to the rest (~90%) of the specification

process, many defects are prevented before they occur

• This reduces rework in both the specification under review and all

downstream derivative work products

• Over time, entire classes of defect are eliminated

Every time we have used SQC, requirements defect density has
gone down by at least 50% – with only a few hours invested

Most requirements defects are repetitive, and can be prevented

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

31

Sample SQC Results

Copyright © 2011 Intel Corporation. All rights reserved. 63

• A team using Scrum reduced requirements defect density from

15 major defects per 600 words in one sprint to 4.5 in the next

• A security technology team reduced defect density from 35

major defects per 600 words to 15 on their first attempt, then

went on to achieve less than 5 within another 12 months

• A large software team reduced defect density according to the

following table:

Rev. # of
Defects

of
Pages

Defects/ Page
(DPP)

% Change in
DPP

0.3 312 31 10.06

0.5 209 44 4.75 -53%

0.6 247 60 4.12 -13%

0.7 114 33 3.45 -16%

0.8 45 38 1.18 -66%

1.0 10 45 0.22 -81%

Overall % change in DPP revision 0.3 to 1.0: -98%

Summary

Copyright © 2011 Intel Corporation. All rights reserved. 64

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

32

Requirements Engineering in the early 21st Century

Copyright © 2011 Intel Corporation. All rights reserved. 65

Requirements engineering is changing based on complexity, pace,

consumer choice, and similar factors

Agility, hierarchy, and abstraction will be key to success in

developing complex future systems

Adopting a systems engineering-based perspective helps ensure

appropriate focus on emergent behaviors and cross-cutting concerns

Several pragmatic, simple requirements practices fit this

environment well: EARS, Planguage, Landing Zones, and SQC are good

examples

Questions?

Thank You!

Sources for More Information

Copyright © 2011 Intel Corporation. All rights reserved. 66

Software Requirements (2nd ed.), Karl E. Wiegers, MS Press 2003

More About Software Requirements, Karl. E. Wiegers, MS Press 2005

Competitive Engineering, Tom Gilb, Elsevier 2005

Software & Systems Requirements Engineering: In Practice, Brian Barenbach et al,

McGraw Hill 2009

Just Enough Requirements Management, Al Davis, Dorset House 2005

Requirements Engineering: From system goals to UML models to software

specifications, Axel van Lamsweerde, Wiley 2009

Software Requirements – Styles and Techniques (2nd ed.), Søren Lauesen, Addison

Wesley 2001

Customer-Centered Products, Creating Successful Products through Smart

Requirements Management, Ivy Hooks and Kristin A. Farry, Amacom, 2001

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

33

Sources for More Information

Copyright © 2011 Intel Corporation. All rights reserved. 67

Requirements Engineering: Processes and Techniques, Gerald Kotonya and Ian

Sommerville, Wiley 1999

Exploring Requirements: Quality Before Design, Donald Gause and Gerald

Weinberg, Dorset House 1988

Effective Requirements Practices, Ralph Young, Addison Wesley 2001

Managing Software Requirements: A Unified Approach (2nd ed.), Dean

Leffingwell and Don Widrig, Addison Wesley 2003

Non-Functional Requirements in Software Engineering, Lawrence Chung et al.,

Kluwer Academic Publishers 2000

System and Software Requirements Engineering (2nd Ed.), Richard H. Thayer and

Merlin Dorfman (ed), IEEE 1997

Mastering the Requirements Process (2nd Ed.), James and Suzanne Robertson,

Addison Wesley 1999

Backup

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

34

Some Additional Planguage Keywords

Copyright © 2011 Intel Corporation. All rights reserved. 69

Gist: A brief summary of the requirement or area addressed

Assumptions: All assumptions or assertions that could cause problems

if untrue now or later

Risks: Anything that could cause malfunction, delay, or other negative

impacts on expected results

Defined: The definition of a term (better to use a glossary)

Wish: A desirable level of achievement that may not be attainable

through available means

Kill Switch: A level at which the project would be cancelled or the

product withdrawn from the market

{item1, item2, …} A collection of objects

See Competitive Engineering by Tom Gilb, or visit

www.gilb.com for a complete list of keywords

Planguage Synonyms

Copyright © 2011 Intel Corporation. All rights reserved. 70

The default version of Planguage as created by Tom Gilb uses different

terms for a few of the keywords than Intel:

Minimum

Target

Outstanding

Kill Switch

ID

Must

Plan

Stretch

Catastrophe

Tag

Intel’s Terms Default Terms

Rather than use Tag as the unique ID for a requirement, Intel uses Tags to

capture keywords or phrases used to search and sort, in keeping with common

social networking use of the term

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

35

http://www.gilb.com/

Example of Early Planguage Use (1988)

Copyright © 2011 Intel Corporation. All rights reserved. 71

Usability
Attribute

Measuring
Technique

Metric
Worst-
Case
Level

Planned
Level

Best-
Case
Level

Initial use
NOTES

benchmark
task

Number of
successful
interactions

in 30 minutes

1-2 3-4 8-10

Initial
evaluation

Attitude
questionnaire

Evaluation
score (0 to 100)

50 67 83

Error recovery
Critical-
incident
analysis

Percent
incidents
"covered"

10% 50% 100%

This table comes from a Usability Specification written by DEC in 1988 for

VAX NOTES Version 1.0. It bears a striking resemblance to a landing zone.

Examples of Scales and Meters

Copyright © 2011 Intel Corporation. All rights reserved. 72

Tag: Environmental Noise

Scale: dBA at 1 meter

Meter: Lab measurements performed according to a <standard

environmental test process>

Tag: Software Security
Scale: Time required to break into the system

Meter: An attempt by a team of experts to break into the system

using commonly available tools

Tag: Software Maintainability

Scale: Average engineering time from report to closure of defects

Meter: Analysis of 30 consecutive defects reported and corrected

during product development

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

36

Examples of Scales and Meters

Copyright © 2011 Intel Corporation. All rights reserved. 73

Tag: System Reliability

Scale: The time at which 10% of the systems have experienced a

<failure>

Meter: Highly-Accelerated System Test (HAST) performed on a sample

from early production

Tag: Revenue

Scale: Total sales in US$

Meter: Quarterly 10Q reporting to SEC

Tag: Market

Scale: Percentage of Total Available Market (TAM)

Meter: Quarterly market surveys

Remember: Scale = units of measure,
Meter = Device or process to measure position on the Scale

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page
Copies may not be made or distributed for commercial use

37

