

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 1

Winning with Flaky Test Automation
Wayne Matthias Roseberry

wayner@microsoft.com

Abstract
Flaky test automation drives everybody nuts. Run it once, it fails, run it again - nope! So you stop running
those flaky tests, and everyone is happy until a nasty bug gets in there that those tests would have
caught.

It is a trap. If you want to run faster and release more often, you cannot afford the wasted time from noisy
flaky tests, but in order to go faster, you have to know about the bugs. This paper will discuss how the
Office team came to terms with this problem, embraced the reality that real bugs live under the flaky crust
and figured out how to use those tests, and their flaky behavior, to their best advantage.

Biography
Wayne Roseberry is a Principal Software Engineer at Microsoft Corporation, where he has been working
since June of 1990. His software testing experience ranges from the first release of The Microsoft
Network (MSN), Microsoft Commercial Internet Services, Site Server, SharePoint and Microsoft Office.
He currently works on the Office Engineering team, with a focus on test automation systems, strategies
and architecture.

Previous to working for Microsoft, Wayne did contract work as a software illustrator for Shopware
Educational Systems.

In his spare time, Wayne plays music, paints, and writes, illustrates and self-publishes children’s
literature.

Copyright Wayne Roseberry 2016

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 2

1 Introduction
Flaky test automation presents a frustrating and special challenge to any team of software engineers. The
tensions to mitigate risk with as much coverage as possible while maintaining small, safe feedback loops
with efficient and fast releases pull in opposite directions. Tests that do not yield a consistent signal with
failures that do not reproduce easily make that tension even more difficult to manage.

Unmanaged, the problem creates an enormous technical debt that destroys the value of the test
automation. Engineers ignore results or bypass processes meant to protect the product from releasing
bugs into the market. Teams and projects pay huge costs in lost time, investigation, or attempting to
patch bugs that escape.

The problem of flaky automation becomes even more relevant as development cycles increase in speed
and releases increase in frequency. Attention shifts from long test phases post code complete to short
and fast release cycles and all the way to the developer desktop where developers execute tests during
coding (the developer inner loop).

This document describes approaches by the Microsoft Office product group to manage flaky automation.
Some of these approaches are centrally run by the engineering team, others are one-off methods used by
specific teams or individual engineers within Office. While the examples here are mostly from Office
specifically, the practices and approach that are emerging across Microsoft, and outside Microsoft in
other companies, appears to be similar.

This document prescribes a three-part approach:

Figure 1 Approach for Addressing Flaky Automation

1.	Measure	
flakiness

• Multiple	
Executions

• Rate	of	
variance

2.	Fix	bad	test	
code

• Fix	Obvious	
bugs

• Change	test	
design

3.	Separate	the	
tests

• Release	
gates:	zero	
flaky	tests

• Bug	
discovery:	
embrace	the	
flake

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 3

2 Definition and Measure of Flaky Automation
Automation is flaky when it does not give a consistent signal. This may be because of flaws in the test
code, but it is also frequently the system under test (SUT) that yields an inconsistent result. For sake of
this document, inconsistency shall be measured in the following way:

1. Run a test (or suite of tests) multiple times under the same conditions (build, environment, etc.)
2. Count the number of distinct failures the test yields. A test may fail more than once, but do so

differently. These would be separate distinct failures.
3. Count the number of times the test fails.
4. Calculate a reliability rate that rewards for consistent pass or failure, and penalizes for variation

Consistency = IF Failures > 0 THEN
 (1 / Distinct Failures) * (Failures / Executions)
ELSE 1

The formula above yields a measure of how often a test gives a variant result, whether or not it passes or
fails. For simplicity, one can reduce the formula to a binary measure
 IsReliable = (Consistency == 1)

It is then also useful to assess how often a given test is consistent across builds
(CountIf(IsReliable)/Count()). This gives an image of behavior of a test or suite of tests over
time. It is likely you will find that a subset of tests remain in constant stability/reliability flux, while others
remains largely stable over time.

3 Test Characteristics and Flaky Automation
Test automation is problematic if it is being used in a way that it is not suited for. Flaky automation that is
the result of buggy test code is always bad. Flaky automation that is the result of buggy product code is
serving its primary purpose, which is to expose the bugs, but such automation is bad when the test is
being used improperly.

We need to consider some aspects of test automation and how they relate to test consistency.

3.1 Precision Versus Recall

Test automation can be optimized to yield a precise pass/fail signal, to detect exactly one failure condition
at a time. Test automation may also be optimized for recall, to find as may failures as possible. When test
automation is optimized for precision, it compromises on recall. When test automation is optimized for
recall, it compromises on precision.

The precision versus recall classification dichotomy cuts across many other types of tests. It is more
about the test’s optimizations than it is about exactly what kind of test is happening or exactly what
process the test reflects.

3.1.1 Precision Tests Are Highly Stable

Precision test validation is binary in nature. The result of the test is an absolute PASS or an absolute
FAIL, requiring no further analysis of the results to establish the result.

Precision automation targets specific anticipated failure cases and fails exactly for those cases. The
failure message will be something precise, such as “Expected: 3, Actual: 2. Ensure that the newly added
parent node relationship is counted as part of the set.” Precision tests will fail for no reason other than

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 4

what the test code asserted or unanticipated extremely critical conditions such as application crash. Unit
tests are an example of high precision automation.

Precision automation is necessary for high speed, critical path processes, such as developer inner loop,
code submission, and build release. The faster the release cycle, the more necessary the test precision.
The process does not afford spurious failure beyond very specific targets.

Flaky tests are sometimes introduced as precision tests, but they fail to meet the goal by the way they
introduce spurious, unanticipated failures into the result set. Time is lost trying to track down root cause,
or trying to reproduce the failures.

3.1.2 Recall Tests Are Flaky by Nature

Recall tests force us to be analytical. The final PASS or FAIL state of the test will often require analysis of
logged test result data, and sometimes deep team triage.

Recall tests are designed to catch failures not anticipated. They exercise as much code as possible in as
many different ways as possible. While failure discovery may come in the form of the same sorts of test
assertions as precision tests, typically failure discovery is a result of culling as many possible sources as
available; processes that do not disappear, deltas between pre and post execution state, exceptions,
errors and assertions in product logs, and variances in execution time. It is often the case that in-code
test assertions are turned off or ignored in favor of sustaining as much on-going random activity as
possible, with the intent to discover failures from post execution data analysis.

One example of a recall optimized test is an end to end test, or end user test. Imagine a test called “insert
image and resize”. The steps may be as follows:

1. Boot application
2. Repeat following for every document in test library, every image in test library
3. Load document from test library
4. Scroll to location image is desired
5. Insert/Image, select test file from test library, OK
6. Select image in document, format/resize, enter new size, OK
7. Confirm:

a. Image is expected size
b. New document length is as expected
c. Text still displays as expected

8. Close document

The test above is designed to happen along as many failures as possible on the way to inserting and
resizing the image. Errors may come up relating to document or image handling for specific files. Errors
may come up in terms of steps not exiting properly or unanticipated errors. Dialogs may take longer to
dismiss than expected, causing errors in the automation navigation control. Virtually any unanticipated
condition could trigger a failure, and that is the point, to report when something unexpected occurs. Were
the above a precision optimized test the steps would be reduced to a single point of functionality – such
as only “insert image” or “resize image”, skipping as many steps as possible.

Another example of a recall optimized test is one where the validation has been broadened. Imagine the
same “insert image and resize” test as above, but this time, add the following validation:

a. Compare screen shot at final state against prior, report diffs as failure
b. Scan for processes still running after completion of entire sequence
c. Scan for windows open that were not open prior to the test starting
d. Execute in debug mode and capture any assert as a failure
e. Scan product logs for the string “error” or “unexpected” or “exception”

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 5

Such a list of possible failure states is going to capture a lot of interesting bugs, but is also likely to
capture a lot of false positives. These are the sorts of errors that when product ships with them people
ask “Didn’t anybody test this thing?” but when bugs are reported in bulk the same people ask “Why are
we wasting our time on these bugs?”

Recall optimized tests operate in an intrinsically flaky world. There is a lot of noise in the signal. There are
a lot of real failures that do not manifest every time.

Why we sometimes use the wrong sort of tests

Coverage pressure typically motivates engineers to use recall test suites in situations where high
precision test suites are required. This is often a product of dysfunctional relationships between
engineering functions or bad practices in release processes.

Regression control panic

For example, if engineers in development and test roles do not feel a strong obligation to each other’s
needs, then test engineers may “fatten up” the build validation with recall optimized tests, leading to
developers ignoring the results, leading to testers adding even more tests to the suite. Long release
processes also tend to motivate addition of recall optimized test automation into the regression and build
validation suites, as long times between builds adds greater risk of regression and greater pressure on
test engineers to achieve coverage, the result being that the releases take even longer as the automation
suite takes longer and longer to execute and results longer and longer to analyze.

Kitchen sink

Sometimes test engineers are instructed by developers to direct all automation at UI and end to end level
to get all bugs from the top down. This is proposed as an efficiency technique, “get them all at once”. This
doesn’t work as well as it sounds, as test fragility and flaky test results investigation costs overwhelm
whatever gains were made by writing and executing fewer tests.

Protect against changing behavior

Sometimes test automation is written at the UI and end to end level to protect against having to change
tests when lower components change behavior. Developers frequently want the freedom to change lower
level code behavior, being accountable for the top level behaviors only. This is a fine distinction between
unit/component/system tests, but it is a poor excuse for having no mid-level layer automated tests at all.
The tradeoffs and risks are similar to the “Kitchen sink” case stated above.

The conclusion in this paper on this point is that whether automation is optimized for recall or precision is
an important distinction to be made, and that it is best practice to keep tests well separated according to
their purpose.

3.2 Simple Versus Complex Test Conditions

The complexity of the test condition has a huge impact on the consistency of a test.

3.2.1 Simple Test Conditions Yield Consistent Tests, Fewer Product Bugs

A simple test condition is one where the conditions of the test are both small in number and easy to
control. Almost any variable that can change the behavior of the SUT is accessible to the test code.
These sorts of tests are almost always unit tests, or very narrowly scoped component tests. Nearly every
variable, such as environment, configuration, prior SUT state, integrated components or external systems
are removed so long as they do not explicitly pertain to the exact test. These variables are introduced
later as test conditions get more complex.

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 6

Under a simple test condition state, there is almost no reason why a test should ever yield different
results from prior times it executes. Flaky tests for apparently simple problems at the unit test level are
almost always the first sign of either bad test code, or that the product itself is written wrong (making
simple problems non-simple). This is almost always the appropriate time to begin refactoring product
code in order to simplify the test condition for sake of unit tests. This document does not go into detail on
refactoring, but outstanding examples and methodologies can be found in the books “Refactoring”,
“Working Effectively with Legacy Code” and “xUnit Design Patterns” referenced in the bibliography.

But such test code, once stabilized, tends to stay stable beyond the developer inner loop (within the inner
loop, such tests yield high reward, rapidly catching regressions that the developer can often fix within
seconds of discovery). They do not add much value catching large, complex bugs of the sort that have
huge customer impact. They tend more to catch the kinds of bugs that would have immediately shown up
during engineering – typically the first time a tester tried to use the code. The value of these tests is a
safer, faster inner loop that forces developers to write better code (an almost inevitable side effect of
refactoring code for testability).

3.2.2 Point to Point Integration: First Hint of Complexity, First Point of Flake

The first big unavoidable problem spots are the code boundaries between integration points, such as
working with external objects, third party APIs or IO. Even when code is refactored, these integration
points remain, just abstracted and componentized into isolated pieces of code, and there is almost no
way to completely bring their behaviors under 100% control of the test. It is also the case that integration
points are one of the most common sources of bugs. Here are some examples of integration factors that
simultaneously cause bugs and drive flaky tests:

- Mistaken assumptions about exact behavior under inputs
- Unknown run-time states that may impact the behavior of integration points
- Mistaken assumptions about exception and failure condition contracts
- Inaccessible control points that affect behavior of integration point
- Asynchronous or multi-threaded operations that may alter behavior or drive race conditions
- Global/static state shared which may affect behavior

It is very common that all unit tests will pass splendidly, only to release code that fails because of
something unexpected at an integration point. Lack of control of the test condition means the failure may
not always reproduce when executed.

3.2.3 Complex Test Conditions Yield Inconsistent Tests, More Product Bugs

As test conditions get complex, inconsistency becomes inevitable. Particularly with end to end testing,
aspects of the SUT and the fixture are beyond test control, and as such the test is unable to guarantee
that the product, fixture or test will behave in the same way every time.

As we add other types of tests that fit complex test conditions, our list becomes expansive and broad.
This is usually where one would introduce load tests, stress tests, configuration and environment tests,
state based testing, fault mode and error handling tests. Each of these new test categories increases the
number of variables under test, and decreases test fixture and test code control of the system state.

In this case, the complex test condition is not a disease to be avoided. The hardest, most difficult bugs in
the system manifest in these complex test conditions only. The bugs are not the sort that are visible by
code inspection, because they are almost always caused by a misunderstanding of the behavior of an
external dependency. Perhaps error codes and exceptions are different than expected. Perhaps memory
management and garbage collection behaviors of consumed classes are poorly understood. Such
misunderstandings manifest in the code, but almost always only during execution in the end to end state,
and usually under complex workloads.

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 7

4 What do We Know About Flaky Automation?
4.1 Stable end to end automation is feasible for most cases

There are lots of opportunity in fixing bad test code patterns.

There are a number of sloppy, bad test code patterns, which occur all too often and contribute to flaky
and unreliable results. This document will not explore these patterns exhaustively (see Meszaros for an
outstanding treatment of the topic), but a few common ones are:

- Sleeps to wait out UI events: change to either explicit check for UI objects, or inject an event-
based construct in the code that tests can attach to

- Timers to wait for asynchronous events: similar to UI, launch something asynchronous and
wait with a timer. It is better to poll status on an event, or create an event handler

- Dirtying static and global state: test fixtures commonly share state between tests such as test
settings, application settings, database content, etc. Ideally the state can be crafted such that
every test is completely independent from all others (for product state, this usually means
refactoring), or the test code needs to be highly reliable with controlling state collision,
initialization and cleanup

- “Flying blind” assuming controls and state are ready without validation: Often seen in
combination with “Sleep and wait”, test code all too frequently begins sending commands to
controls or resuming progress without confirming the test fixture and SUT are ready to proceed.
Sometimes this happens because an application may not provide appropriate hooks (e.g. one
time I inherited a piece of automation where in comments was the phrase “Hope to God that the
icon is in the upper left of the window” right before the code to initiate a click).

The first attempt at stabilizing automation will likely close large gaps through cleaning up bad test code
alone. I have seen teams make as much as 20 percentage point gains in test reliability with this sort of
effort.

Do less in the test

As discussed in the end to end test example prior, doing more offers more opportunity for failure. If the
point of a test is to test one behavior, then the test code should do as much as it can to only exercise that
one behavior. This is easy at unit and component test level, but harder with integration and system tests,
especially UI. There are several ways to approach this:

Direct navigation: Whether it is inside of an application or a web site, it is often possible to go
directly to the point where the test executes rather than navigating through a long path of menus,
pages, buttons, controls and dialogs. Web pages often allow direct access to some sequence via
a URI. Applications may or may not have a means for automation to get directly to some state. In
either case, it is sometimes necessary to change product code to allow such direct connections to
avoid spurious failures on the path to a specific test.
API calls for initialization, UI for test: One semi-direct path for a test is to call product APIs to
initialize test state, and then use the UI and user level controls to perform the actual test.
Reduce surrounding content/state

Shifting from out of proc to in-proc

Most end to end and system tests operate out of process. The test code runs in a completely different
process than the SUT. The test code may be sending UI events to the application via a message queue,
or it may be sending requests across a network connection, or perhaps dropping packages or files off into

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 8

work queues for processing. Whatever the means, out of process testing offers very little control of the
test fixture for the test code is almost always very flaky.

Many times, teams will evaluate their tests and move many of them to in-process testing. This means that
behaviors being tested must be exposed via an API that is directly callable by the test code and loads into
the same process as the test code. This gives the test code more control over the fixture state. It also has
the added benefit that call stacks at point of failure will contain whatever product code was active at that
point in time alongside the test code.

The typical split is to take business logic related tests, the flow of the system from one state to another,
and move them to in-process tests. They are separate from UI tests, which focus exclusively on whether
or not the UI behaves correctly based on test conditions. This allows deeper, more in-depth coverage of
complex business logic state without having to absorb the difficulty and flakiness of UI testing.

Shifting from end-to-end to component and unit tests

Similar to moving tests from out of process to in process, much value is gained by moving tests from end
to end and system testing level to component and unit test level. Unit tests are stable, fast and reliable
and leveraged appropriately can return much more power than the same tests performed end to end.

The trick is to pick the correct tests. Traditionally, there has been an artificial and dysfunctional separation
of “developers do verification tests” and “testers do all the other tests.” But a large portion of the testing
domain includes tests which are far more efficient and practical at the unit testing level, but were written
as end to end or system tests purely because the tester did not have permission to add unit tests to the
project.

My rule of thumb is “fat test domains should run as unit tests.” A fat test domain is one where the number
of tests expands rapidly from combinations of test variables against single aspects of the behavior under
test. Some examples:

• Special character handling
• Complex data parsing
• Complex state permutations
• Incorrect data
• Error and exception state handling
• International and localized data
• International environment settings
• Etc.

All of the above in a typical test strategy are paired up against different system inputs or variables and
result in an extremely large number of tests. Almost all of these tests could be crafted as well written data-
driven test engines that execute against low level product APIs. The difference in time to execute is huge
(sub-second versus sometimes multi-minute) and reliability enormous.

Testing in Production

This document does not go into many details about testing in production, but moving tests from end to
end automation into some sort of production system monitor and telemetry signal test is an often-used
technique. Done correctly, and in a very intentionally well-planned manner, testing in production can yield
faster bug discovery at lower cost. The service under test must meet certain criteria, though, before such
practices are safe. See “Testing Services in Production” by Stobie for an excellent treatment of the
subject.

It is also possible to do testing in product/end to end testing hybrids. Rather than deploy a simulated
environment into a test laboratory, deploy the code under test into a slice of the production environment,

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 9

but isolated from customer workloads. From there, the test automation targets this slice, generating a
synthetic workload against a real deployment. This practice is becoming more and more common as
service deployment and update gets more and more streamlined.

4.2 Small quantities of inconsistent tests have a huge impact

It is common that 15-20% of tests remain flaky, even after efforts to stabilize them (Google reports 16% of
tests are flaky, Micco). This creates a problem as pressure to release more often pushes teams to
execute more tests more often. Therefore, the faster and more often you release, the more of an impact
inconsistent tests have on the team. The more tests are executed by average engineer, the higher the
average test consistency is needed to keep the team efficient. The more frequently any given test is
executed, the more reliable it needs to be to avoid exposing somebody to a flaky result.

Consider a test with a 99.9% constancy rate executed 1000 times a day. On average, it is going to yield a
false signal every day. Consider a test suite of 1000 tests, where the average test consistency rate is
99.9%. On average, that test suite is going to yield a false signal on every execution.

Example:

The average Office engineer executes ~300 automated tests prior to every code submission. This means
that average test consistency rate needs to be better than 99.7% in order to avoid every single job
yielding a failure.

4.3 More bugs fixed, but lower fix rate come from inconsistent tests

Despite our frustrations with flaky tests, they yield real product bugs, and removal of tests that that exhibit
flaky results represent real risk against product quality. The following is gained from an analysis of test
automation failure triaging inside Office. Results are likely to vary a great deal in other teams, companies
or environments.

One analysis we did was to compare total product bugs found by test automation and fixed in product
against only those that came from automated tests that were stable (60% of tests at time of analysis). The
end result yielded a 27.5% reduction in product bugs fixed. In other words, those bugs would have
escaped past the test automation phase and into the hands of end users:

Total Bugs (test and product bugs) 331
Total Product Fixed Bugs 120
Total Bugs Remaining After Removing Flaky Scenarios 220 (66.4%)
Total Product Fix Bugs Remaining After Removing Flaky
Scenarios 99 (82.5%)

Total Scenarios 1278
Remaining Scenarios (after removing) 779 (60%)

The above analysis was performed before Office had started execution of reliability runs, so there was
little known about the behavior of tests over large numbers of iterations against the same build. Afterward,
many practices had changed in terms of bug triaging practices and automation failure turnaround. Later
analysis showed even more interesting trends:

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 10

Reliability
Rate 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Total
Bugs

Bugs Fixed 12 5 11 14 15 26 14 53 40 48 11 249
Percent of
Fixed Bugs 5% 2% 4% 6% 6% 10% 6% 21% 16% 19% 4%

Tests that were 100% reliable accounted for only 4% of the bugs fixed overall (not distinguishing between
product and all bugs). There was an obvious trend toward mostly fixing bugs where reliability was
between and 60-99%, but still a non-trivial collection of fixed bugs remained.

This higher fix quantity comes at the price of much, much higher noise.

Figure 2 Reliability of Tests and Bug Fixing
As shown in the chart above, for the same set of tests, bugs found by non-reliable tests accounted for
98% of the bugs reported, but only 33% of those bugs were fixed. Meanwhile, reliable tests accounted for
just 2% of the bugs reported, but 69% of those bugs were fixed. It is clear that unreliable tests were
yielding far more bugs than reliable tests, but did so at a much lower rate of fixing.

5 What to Do with the Flaky Automation
Once test automation reliability is understood and measured, you need to do the right thing with it. The
recommendation this document makes is to separate it into two suites. A gating control suite and a bug
discovery suite.

Percentage	of	bugs	filed

Reliable	tests Unreliable	tests 0%

20%

40%

60%

80%

Reliable	tests Unreliable	tests

Fix	rate	of	bugs	found	by	test	
automation

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 11

5.1 Divide Execution into Gating Control and Bug Discovery

Figure 3 Gating Control Versus Bug Discovery
Gating Control is any test suite that is used to control release of code to a next step in the engineering
process. Such steps may be: engineer submits code to repository, branch integrates to parent branch,
main build is released from a branch to engineering team, product code is released to end users. Failures
on gating control slow down the release, creating expensive delays. Some gating control suites, such as
submission to repository are executed at very high frequently, and others, such as product release to
end-users are executed at a lower frequency. The primary purpose of gating control is criteria evaluation
and regression detection. Gating control requires precision tests.

Bug Discovery is any test suite that is used to discover bugs in the product. Such a test suite does not
have to gate release into any particular phase of the release process. Failures in bug discovery should
generate work in the product backlog to analyze results and fix product bugs. The primary purpose of bug
discovery is to discover as many bugs as possible. Bug discovery requires recall-optimized tests.

Example:

Office runs several types of automation test jobs:

Developer Jobs (gating control)
Automation run by developer prior to code submission to repository. Tests are a
subset of the product BVT tests (determined by what code was changed on
submission). Developers are expected to address failures prior to code submission.
Hundreds of jobs per day.

Team Branch Looping Jobs (gating control)
Regular jobs against current code in team branch of repository. Tests are typically
same as product BVT (Build Verification Tests). Failures may result in a back-out of
any submissions since previous job. Dozens of jobs per day.

Integration Jobs (gating control)
Jobs run prior to push of product team branch into parent (main) branch. Tests are
typically same as product BVT tests. Failures are addressed prior to integration. One
job every 1-5 days.

Main Build Validation Test (BVT) Jobs (gating control)
Jobs run daily against integrated main branch. Output is official drop of Office.

Gating	
Control

Bug	
Discovery

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 12

Failures in suite set individual product team “zones” into read-only mode until the
failures are addressed – i.e. integrations and submissions to that code are prevented.
One job per day.

Main Build Code Validation Test (CVT) (bug discovery)
Jobs run daily against integrated main branch. Failures are recorded as bugs, but do
not gate any processes at all.

5.2 Create a Reliability Measurement Run

The tests used for both gating control and bug discovery need a reliability calculation. This means the
tests must execute several times, the more times the better. How many times is determined by the
amount of reliability precision you need to measure. In order to assert a 99% test reliability at least 100
executions of the test under the same conditions are required. Likewise, to assert 99.9% reliability, at
least 1000 executions are required.

This many executions may not be practical or cost effective. It depends on the capabilities of the
automation system and on the execution times of the tests. You may be able to accept a compromise.
For example, if you can only manage 20 executions of a suite per build (which can assert, at best, an
1/20=5% failure precision) you could achieve up to 1% failure precision by aggregating the reliability of
tests across 5 builds. The measurement is somewhat inaccurate, as tests where reliability got either
better or worse inside the span of 5 builds will be obscured, but this may be a manageable inaccuracy.
The measurement is not so much about extremely high precision every build as it is about generating a
number capable of managing a suite for efficiency over larger periods of time.

Example from Office: Reliability Run:

A background process picks up both the BVT and CVT test suites and executes them repeatedly against
whatever most recent build completed the BVT run. During the week, where builds come out daily and
there is less pressure on the automation system, 100-200 executions of the entire suite execute per build.
Failures are automatically identified and checked against known failures, and new bugs automatically
filed for any new failures. Existing bugs are updated with failure hit statistics. Reports show teams
reliability statistics for every test in the suite.

Figure 4 Office test automation reliability report.

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 13

5.3 Move Automation into Gating Control Based on Reliability

Once the suites are separated into gating runs and bug discovery runs, it is time to manage the suites
based on reliability numbers. Here are the principles to keep in mind

- Gates demand reliable “A fail is always a fail” signal – hence high reliability
- More frequently the gate is tested, the higher the reliability required
- More frequently the gate is tested, the fewer tests should be in the suite
- If there is no gate, then frequency of execution has no penalty

Pick a reliability threshold for each gating suite. Pick something pretty high, but not so high as to be
impossible. If 50% of the suite is at 80% reliability and below, then you might need to compromise with
80% for a short period of time to give teams the chance to address reliability issues. Or maybe that 50%
of tests does not need to gate releases. This is a balance you will need to gauge on your own.

Once you set your threshold, begin moving and removing tests. If you trust your threshold, consider doing
so via an automated process. Anticipate a lot of back and forth conversation about whether a test should
be just moved or removed completely. Anticipate a lot of anxiety over tests that cover critical functionality,
but which do not meet the bar. Engineers will want exceptions to the threshold. You get to decide how
rigid you want to be. Experience in Office has shown that a period of getting used to the idea works well
before dropping a firm “no exceptions” hammer.

Ultimately, the threshold that works best is one that balances coverage goals and how much time you can
afford delaying releases for spurious failure investigation. If at least one flaky failure manifests on every
single job, dozens to hundreds of times a day, then perhaps moving to the bar to only happening one out
of four jobs, or one out of ten jobs is a huge gain.

Coverage is similar. A brutal, numbers only movement of tests to later and later gates and into bug
discovery risks a bug discovery later than you want. Maybe a customer sees a bug before your
automation finds it. Or maybe an official build is released to engineers that breaks a feature from some
other team. This is inevitable and the best way to approach it is to individually pull back tests where the
cost of that escape is unacceptable. This means that whatever test it is needs to be stabilized before
moving to the higher gate. Either that or accept the escape risk as a balance against faster releases.

Example:

BVT Test Demotion: Office runs an automatic daily process that examines the reliability results of all
BVT tests for the last 7 builds. Any test that does not sustain an aggregate 95% reliability over 7 builds is
automatically moved from the BVT suite into the CVT suite. Beyond automatic demotion, individual teams
use the reliability report data to push their BVT test reliability as far as 99% and higher. Current (as of July
27, 2016) overall Office BVT test reliability rate is > 98%, often 99% or higher.

This same push has also substantially improved the developer experience. Previously, every automation
job launched by a developer to evaluate code for check in had at least 1 failure, 100% of all jobs failed.
Engineers would either execute twice (and hit a different failure) or scan prior results to see if their failure
was known previously. The current rate of failed jobs is 60% - a full 40 percentage point improvement in
passing job rate. It is well worth noting that the average number of tests for passing jobs is 85, whereas
the average number of tests for failing jobs is 801, confirming positions elsewhere in this paper regarding
the impact of test suite size on reliability demands.

This notion of curating automation suites based on test reliability is not isolated to Office or Microsoft. A
similar practice as stated in the example happens at Google (Micco).

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 14

5.4 Move Flaky Automation into Bug Discovery

Any test that does not meet the reliability criteria for gating processes should be used for bug discovery.
This permits the execution of tests where stabilization is either unrealistic, or would render the test too
sanitized to effectively discover new bugs.

Working with flaky automation requires a different approach, both in terms of how the test is executed and
in how the results are processed.

Change in Execution Style

Almost all tests contain some sort of pass or fail assertion inside the test method. But at this point it is
best to modify that approach. Look for more signals of potential failure. Some approaches might be
looking for processes that are left open after test completion, windows or dialogs that are not dismissed,
files left open, asserts thrown by the application. Application log files and event logs should be mined for
exceptions and error content. System resource usage should be monitored for leaked memory,
resources, over-active file system access. Latency and throughput checked for diminished performance.

Some forms of testing remove formal validation completely and just focus on applying load. This has
been a long time common practice for performance, scale, load and volume tests. It is not too uncommon
with “monkey” tests, applying stochastic load patterns to drive the application to error prone states.
Rather than trying to increase the ability of the automation code to successfully maintain the complex
state of the test fixture, reduce the amount the automation code cares about. Just keep the SUT moving.

Change in Analysis

Recall optimized tests demand more analysis and time than relying on a report of which tests passed and
which tests failed. The widened definition of potential failure and the lower validation of load generates a
lot of false signals. These signals largely demand a significant investment in human time and effort, which
is why the activity is used to feed the product backlog with work rather than gate the release processes.

The challenge, then, is to sort through the volume. The most common techniques are:

Failures that have never been seen before

The easiest way to address failures is to tackle everything that is new, but if the rate of
intermittent failure is high enough, or the suite large enough, this becomes an overwhelming
problem. Teams that start here, before cleaning up their product and test suite, usually abandon it
for one of other methods mentioned here.
Teams also tend to ignore failures that appear in a run when that failure has been seen
previously. The justification for this is that whatever change was submitted is not likely the cause
of the failure, hence the engineer should proceed with code submission. This makes sense when
focusing purely on whether or not a specific change has caused a regression, but extensive use
of the practice creates a large pile of engineering debt and a general distrust of the test
automation.
This was the first technique the Office team used to get a handle on its intermittency, and the
impact on test system distrust was dramatic. Over time it came to a point where every automation
job used to gate a check-in had some sort of failure in it, and engineers would either ignore them,
or run the job twice, submitting code if the failure did not happen both times. The overall passing
rate of the suite diminished over time until it was a largely ineffective way to evaluate a build.
Eventually, the Office team followed the suite splitting practices advised in this document and
adopted a strict “100% pass” policy on code submission and build validation jobs. The result was
a substantial improvement in the engineer code submission job passing.

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 15

To use this technique, the automation system must be able to identify failures as pre-existing or
new. Automated tests may fail for many different reasons. The Office team uses a mechanism
that utilizes a combination of string matching templates, call stack frame matching and comparing
edit distance between failure messages to determine if a failure is new or already known
(Robinson). Once a given failure is known and identified, the automation system can track when it
was first seen, what builds it has been seen in and how often it occurs.

Failures that occur more often than others

This is typically the first, and easiest priority decision with any failure. More frequent failures are
easier to diagnose and easier to validate when fixed. But it is also clear that a failure which
happens more often is going to cost more overall than a failure that is rare, all other aspects such
as severity and scope being equal. Frequency therefore usually, although not always, works as a
good rule of thumb for priority.

Failures that are likely to also occur inside gated processes

It is advised to include gating tests inside the bug discovery suite. In addition to helping compare
results between tests, it is also useful for ferreting out lower occurring intermittent failures in order
to fix them in the gating tests. It is also useful to compare results of tests in one context or
another. Test automation environments are not always completely clean, and factors like system
load, resource availability and machine re-use may cause tests to change their intermittent
failure. Regardless, tests that gate processes have high priority for fixing intermittent issues.

Failures that occur inside code paths that are known to be problematic for customers

This requires more insight about how the product is used and where customers are having
difficulty. If a feature is moderate to high priority, then fixing intermittent failures in that feature will
have a larger return on investment than on features that are almost never used.
Don’t fall into the trap at only looking the highest priority features, those that fit into marketing
team demos. Usage patterns on any product or service tend to have a long, fat tail, which means
that there is a very large quantity of behaviors that range from low to moderate usage, and any
failure hitting that range is going to have a big cost impact on the product.

Failures that suddenly change their rate of occurrence between builds

This technique acknowledges the system experiences intermittent failures, and uses sudden
large increases in the rate of occurrence indicate a change in the system for the worse. We have
seen teams inside of Office use this as a mechanism to draw team attention to failures they might
have ignored otherwise. This also a failure investigation pattern that has been reported by
companies such as Google (Micco).

Failures that suddenly appear “new” against the same build

I discovered an instance of this while collecting charts for this paper, and realized it was an
important detail to examine. When a test suite is executed multiple times on the same build of the
product the new failure discovery rate is expected to start high, and then drop off progressively
with each iteration. There will be some degree of variance around the slope away from a
projected trend line, but that variance should either be single spikes or not much larger than the
average variance.
When there is either a series of spikes in “new issues” around the same sequence in time, or
when the variance is much larger than the average new failure count discovered per iteration,
then that is a clue that something systemic is affecting the test runs.

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 16

The chart below is taken from the Office test automation reliability run, all for the same build on
July 24, 2016. The suite contains ~21k tests, mostly end to end. The horizontal axis shows
progressive iterations of the suite; the vertical axis shows the number of new failures reported per
each iteration. The slope follows a diminishing number of discoveries over time, as expected, but
there are several “new issue” spikes that vary a great deal from the trend line that suggest
something was affecting the suite behavior overall. Such information offers clues as to the source
of intermittency.

Figure 5 Office test automation reliability suite, July 24 2016

Projecting “When will these tests stop discovering bugs”:

Figure 6 Office test automation reliability suite, new failures from 7/19/2016

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 17

The fall off rate of new failures discovered per iteration tends to be a power curve, where the area
under that curve is the total number of new failures it is possible to discover with that test suite on that
build. While the value of new failures may be slowly approaching zero for a long time, it is possible to
arbitrarily set a threshold (e.g. “less than 1 new failures discovered per run”) and project how many
iterations are needed to stop discovering failures. In the above example, that formula would be:

Fall off rate = 64.766 x-0.611

Iterations at < 1 failure per run = !
"#.%""

 = x-0.611 = !
"#.%""

&
'(.)&& = ~921	𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Likewise, total number of bugs discovered at that point is an integral of the equation bound by X= 1
and X= 921. That formula looks like:

64.766	𝑥𝑥<=."!!𝑑𝑑𝑑𝑑 = ~2202@A!
! 	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑	𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓	

From this, you can extrapolate how many iterations are needed to see any given percentage of the
total bugs the suite will find. The progression is non-linear, so a substantial percentage of the total
bugs is discovered with few iterations, with diminishing returns for each iteration. The values from the
example are as follows:

1102 (50%) = 185 iterations

1652 (75%) = 467 iterations

1981 (90%) = 716 iterations

Doing the above gives a very powerful assessment of the discovery value of a suite. You can balance
the value of extra iterations against the value of the bugs found with each iteration. You can also use
the number of iterations required to hit your threshold as a quality statement about the intermittency.
In this example, 921 iterations would require very large numbers of machines. We can find about 50%
of the bugs the entire suite will find in 185 iterations, but even that is a substantial investment. A goal,
then, would be to reduce that number so that all the failures the suite is found are discovered more
quickly – in fewer iterations.

6 Conclusion
While flaky test automation presents many challenges and difficulties, there are practical ways to address
those challenges. Sometimes the flake is a sign of bad test code, sometimes it is signal that there is a lot
of bugs to be found with the test. Measure the automation for reliability and consistent results, and then
use that information to either target fixes against the automation and product, or separate the automation
into precise/reliable tests that protect phase gates in the engineering process or recall optimized less
reliable tests that find bugs in large quantity. Different analytical approaches and practices can help any
team get their test automation under control.

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 18

References
Martin Fowler, Kent Beck, John Brant, William Opdyke, Don Roberts, Erich Gamma, 1999. Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional

Michael Feathers, 2004. Working Effectively With Legacy Code. Prentice Hall

Gerard Meszaros, 2007. xUnit Design Patterns; Refactoring Test Code. Addison-Wesley

David Scherfgen, Online Integral Calculator, http://www.integral-calculator.com/ (accessed July 26, 2016)

Robinson, M. P. Test failure bucketing, U.S. Patent 8,782,609 July 15, 2014

John Micco, Flaky Tests at Google and How We Mitigate Them,
http://googletesting.blogspot.com/2016/05/flaky-tests-at-google-and-how-we.html, blog entry May 27,
2016

Keith Stobie, Testing Services in Production, PNSQC paper 2011,
http://www.uploads.pnsqc.org/2011/papers/T-11_Stobie_paper.pdf (accessed July 7, 2016)

