
Testing Mobile Software with Machine
Learning: An Introduction

Aaron Briel
PinkLion

aaron@pinklion.ai

Chris Navrides
test.ai

chris@test.ai

Jennifer Bonine
PinkLion

jennifer@pinklion.ai

Abstract
User Interface testing has changed very little since its inception. It is still completely reliant upon knowing
the state and actions available on the screen. However, this way of testing is incompatible with current
development methodologies such as A/B flighting and dynamic data, as well as variations by test
platform. These new methodologies present a significant challenge to the current paradigm in that the
current state of the application may not be known. Platform variations contribute to automation framework
bloat and test cycle time. This paper demonstrates how Machine Learning can assist in closing the gap
by removing reliance on the state of the application and its underlying DOM.

Biography
Aaron Briel is a seasoned engineer with over 15 years of experience in development, QA automation,
DevOps, cybersecurity, AI and Machine Learning. Applications he built for a Fortune 100 company
produced data presented in Congressional hearings to demonstrate post-breach compliance progress.
His work in AI started at the University of Minnesota in the early 2000’s, where he developed a genetic
algorithm capable of generating hip-hop drum sequences. Aaron is currently Chief AI Architect for
PinkLion and a graduate student in ML/AI at Georgia Tech.

Jennifer Bonine has been a strategic C-suite advisor for some of the most respected Fortune 100
companies in the areas of technology strategic roadmap, Quality Assurance, organizational development,
and change management. She is a well-known speaker, teacher and trainer, keynoting at both national
and international technology conferences. Jennifer has held executive level positions at leading
development and quality engineering teams for Fortune 100 companies in several Industries. She is
currently the CEO of PinkLion.

Chris Navrides has worked in the software automation and testing industries for 10 years at large tech
companies such as Google, Microsoft and Dropbox. He holds patents for temporal content selection and
entity-based summarization from his work at Google. Chris is currently a Software Engineer at test.ai.

1 Introduction
User Interface (UI) testing was originally developed when applications were far more static and
development cycles were on the order of quarters to years. Tests that made assumptions regarding the
state of the UI and underlying application were logical at the time. Webpages and applications today,
however, are dynamically changing based upon Machine Learning (ML) models determining the optimal
items to place on them. An example of this is content customized for users on Amazon. New versions of
native applications are released every few weeks filled with A/B experiments.

Test authors and framework designers are having an increasingly hard time writing reliable tests while
using technology and techniques developed 15 to 20 years ago. While the introduction of automated
testing into the development lifecycle promised to more closely accommodate increasingly agile
methodologies, the holy grail of Continuous Delivery has rarely been realized much less sustained.

A traditional automated testing solution relying on the DOM is likely to break when faced with modified
content or elements, whereas an AI/ML driven testing solution can demonstrate flexibility. For example,
an image-based element classification approach has no dependency on the DOM. Renamed elements
with the same images would have no effect on this class of tests, and even visually modified elements
might only require a few training iterations.

What if minor details in the flow of a specific validation change? A traditional automated test would likely
fail, even with bloated and fragile conditionals. However, an ML-based approach to navigation would
intelligently find the correct path to the pertinent location required for the test.

Automated testing must adapt and become smarter in order to meet the business and quality challenges
of the modern software development lifecycle. Development of traditional automation solutions is often so
time consuming that the final product, once completed, is no longer compatible with the application it was
initially meant to test. Maintenance of these frameworks consistently exceeds the release cycle timeline
itself, rendering the approach infeasible in the current fast-paced reality of software development. Hard
coding all of the possible scenarios to make “intelligent tests” is one approach but is inflexible and doesn’t
scale. Machine Learning is designed specifically for challenges such as these by offering solutions more
compatible with rapid release cycles.

2 What is Machine Learning?
Machine Learning (ML) is a software development technique that allows a program, often called an agent,
to generalize about data it has not yet seen. Instead of programming a set of predefined commands, a
model or computer brain is trained by presenting the agent with sets of examples or input to learn from.
The model essentially provides the agent with confidence percentages for behaviors or actions to take
given specific states it is presented with. Using this model allows it to handle both previously seen, and
unseen challenges in the future.

2.1 Supervised Learning

The approach of training by providing feedback based on existing examples is known as supervised
learning, or function approximation. A simple example might include an image classifier. The supervised

aspect of learning consists of the fact that a human provides feedback as to the correctness of the
agent’s predictions. This feedback could consist of well-labeled training data. The image classification
example is relevant to test automation not only for validations but also for element identification. An
example of image classification is an agent that can classify number images. In training, it is presented
with thousands of examples of hand written numbers with correct labels. Depending on the number of
samples, training sessions, and other factors, this can produce an agent that is able to correctly classify
well written test samples. (Briel, 2018).

Figure 1: Test samples and predictions given by a number classification agent

2.2 Unsupervised Learning

In unsupervised learning the agent only has whatever data is presented to it without any behavioral
directives. One popular unsupervised learning technique is called Clustering. Clustering is an exploratory
approach to data analysis that allows for the discovery of previously unknown relationships in data. The
EM Algorithm is often used as the basis for clustering algorithms, where parameters are estimated to
describe an underlying probability distribution when only part of the data produced by the said distribution
is observable. Dissimilarity in data objects becomes apparent in Clustering, making it an optimal technique
for anomaly detection. This is highly relevant in the testing context, as anomaly detection could be used to
discover defects in applications.

Deep Learning has provided many opportunities to explore unsupervised learning. DeepMind, for example,
introduced its AlphaZero system that was able to teach itself how to play chess, shogi, and Go, defeating
previous world-champion AI applications in the process (Silver, 2018).

Figure 2: DeepMind’s AlphaZero system training for 700,000 steps, showing exponential performance
increases after learning occurs

2.3 Reinforcement Learning

Reinforcement Learning (RL) is a hybrid ML approach that can leverage aspects of supervised and
unsupervised learning. Constructing a model and optimal behavioral in RL becomes a balancing process
of exploring the environment and exploiting rewards. The Q-table contains values for different states, and
is updated based on the classic Bellman Equation (Littman, 1996):

 𝑄! 𝑠, 𝑎 = 1 − 𝛼 𝑄! 𝑠, 𝑎 + 𝛼[𝑅! + 𝛾𝑉! 𝑠!] (1)

The maximum Q-values for actions and states represent the optimal policy of the agent, or the best action
to take given a specific state. A fundamental property of the Q-update function is that the values are
updated recursively as the agent progresses through its tasks. A discount factor (𝛾) is applied to future
rewards, allowing flexibility with respect to how much an agent values immediate versus delayed actions.
Introduction of the learning rate (𝛼) ensures eventual convergence of the Q-updates.

An example of an agent that uses RL might be a robot vacuum cleaner. As the robot moves a specific
distance without hitting an obstacle it might be presented with a positive reward, while hitting an obstacle
or staying in place might present it with a negative reward. A reward system in this context might be set up
to emulate walking on a hot beach. The agent wants to keep moving around in order to prevent its feet
from burning, and stepping on broken glass would teach it to avoid such obstacles in the future.

3 Element Classification
The easiest way to leverage ML models in testing is through element classification. Similar to how a
human can look at an app they have never seen before and determine what is a menu button or search
button, the same can be achieved by a well-trained ML model. This is something that traditional test
automation is simply incapable of achieving because there is no standard naming or app design
convention for commonly occurring elements such as search icons and menus. For example, search
icons aren’t always going to have an ID of “search_icon”. In the ML scenario, an image of the page might
be broken up into sub-images which constitute element contenders. The human tester may go in and
provide feedback on the labels provided to the elements by the agent. Rewards are allocated based on
these adjustments and the model is updated appropriately. Over time, the model is able to correctly
predict the label to assign to elements it has never seen.

3.1 Shopping cart classifier

To illustrate element classification, we will present an example of the steps that would be taken in building
a shopping cart classifier. One would first obtain a significant number of shopping cart images. These will
be used to train a model on how to classify the element icon.

A large number of samples is necessary in the data selection process in order to cover the wide range of
what constitutes the shopping cart element. An example of the variance encountered includes an empty
cart compared to one with items in it, possibly denoted with a number over the top. Other examples
needed to increase the diversity of items presented include carts enclosed in a circle and ones with
varying background colors. The reason such a wide range of examples is needed is so that the agent is
able to generalize and classify cart examples that have not yet been seen. Fig. 1 illustrates the extent of
diverse cart items that might be considered (Frost, 2019).

Figure 3: A sample of cart images that might be used to train the model

4 Reinforcement Learning for Exploratory Testing
Another area where Machine Learning can augment the testing effort is with exploratory testing. RL would
be an appropriate contender for this, as it involves a process discussed previously of exploration of the
environment. When an RL agent using Q-learning crawls a webpage, it will initially execute random
actions leading to exploratory application behaviors. It’s Q-table in this case could be populated with page
element and action combinations, Actions like ‘click’ executed on certain elements such as buttons may
have a higher reward than a ‘swipe’ action on a text field, and its Q-table will be updated accordingly.

With respect to element labelling, when an agent crawls an app it may apply some correct and some
incorrect labels. When the human tester provides feedback to the agent as to the correctness of its
labeling, a strong positive reward is assigned in the cases of elements labeled correctly, while a negative
reward is allocated to incorrect labels. Over a few iterations of this training the agent improves its labeling
process for subsequent crawls.

This approach can also apply to paths taken by the agent within the application. A strong practical benefit
of such an RL approach in test development is that the exploratory phase may lead to testing paths that
may have never been considered. Positive rewards can be distributed in the case where the agent
discovers novel screens within the application, while negative rewards might be given in situations where
progress in discovery has stalled or the agent has browsed to an external application. Situations such as
these are analogous to the beach walking example earlier, where the stalling corresponds to standing on

hot sand, which browsing away from the app is similar to stepping on broken glass. The fact that the
approach provides value in automating a previously expensive human task is a strong ancillary benefit.

5 ML for Testcase Creation
We saw that it is indeed possible for RL-driven exploratory testing to produce novel test flows. It would
thus by no means be unrealistic to postulate the feasibility of an agent capable of generating test cases.
Along with element classification, another model could contain more abstract information related to
common flows of application behavior. Such a system that combines these areas of functionality has
indeed been proposed (Santiago, 2018). In this proposal, test flows are modeled as “sequences”, where
specific phrases or words can be processed as application behaviors and others constitute elements.

Figure 4: Modeling testing as a sequence or test flow

The elements training discussed previously could occur within a “web classifier” sub-system, with
additional human feedback provided to a test flow generator. A grammar module could then convert said
flows to a “test generator” that produces executable tests.

Figure 5: AI driven test generation system

Test cases themselves could be simplified to only include validations instead of sequences of prior steps.
When a human engineer is asked to test that a guest login page loads, we are not concerned with how
she got there. ML presents us with the ability to replicate this human-like behavior, where navigation to a
specific page for validation is possible without having to explicitly code all steps it may take to get there –

steps which are likely to change and break a traditional automation test. This is illustrated in Fig. 2 and
Fig. 3. A traditional automation approach would require conditional logic to deal with the environment
loading page and the android-specific popup, while an ML approach would not.

Figure 6: Running a test to validate that the welcome page loads on a certain android device

Figure 7: The same test run on a different device and environment

6 ML Solutions in Practice
PinkLion and test.ai have applied the techniques above to thousands of applications. Reinforcement
Learning in particular is a technique frequently leveraged, wherein a process called “crawling” is
executed, consisting of exploratory testing and element extraction. This is analogous to the initial phase
of exploration in RL, where the Q-table is populated with values for actions and corresponding states.
Many defects are often discovered in this initial phase, and release dates have frequently been pushed
forward as a result of this process, even before any customized test flows have been developed.

7 Challenges and Limitations
As with any technology there are limitations, problems and challenges. One limitation is that complex use
cases still require customized automation flow development. Although test case creation was briefly
touched, it is nowhere near the point of being able to capture complete business requirements. A
paradigm shift in application testing focused on more granular validations combined with more simplified
test case creation may result in a convergent satisfaction of this limitation.

Maintenance and bias can also introduce challenges. If elements change to a point where the model no
longer recognizes them, additional training may be necessary. Although this may initially take longer than

a minor code modification in a traditional automation script, it could provide an added benefit of making
the model more generalizable and adaptable to future element changes.

Finally, it is possible that a human may introduce bias into a model. This bias could be the result of an
error in classification. In this case repeated training may be necessary in order for the model to balance
itself to the correct classification. This is a small price to pay for the benefits provided by novel element
classification.

8 The Future
Industries are disrupted by technological advancements, forcing a change in the way humans are
needed. QA and automation are no different, and the rapid introduction of AI and ML into this space will
require a paradigm shift in the approaches taken. As applications are ultimately consumed by humans,
human input will be needed in their development and testing. ML will first replace the need for automation
of menial and repetitive tasks but will eventually evolve to higher level test creation. Human feedback will
be needed to guide these systems, although even this might eventually be provided through beta or
crowd-sourced behavior analysis.

References
Briel, Aaron. 2018. “Image Classification using Logistic Regression with Stochastic Gradient Descent.”
https://github.com/aaronbriel/logistic-regression/blob/master/logistic_regression.pdf (accessed July 31,
2019).

Frost, Nick. 2019. “Training Data for Our Open-Sourced AI Classifier for Appium.”
https://www.test.ai/blog/training-data-for-app-classifier/ (accessed August 1, 2019).

Littman, Michael. 1994. “Markov games as a framework for multi- agent reinforcement learning.” In
Proceedings of the Eleventh International Conference on Machine Learning (July 1994), pages 157–163.

Santiago, Dionny. 2018. “AI Driven Test Generation. Machines Learning from Human Testers.” In 36th
Annual Pacific NW Software Quality Conference. http://uploads.pnsqc.org/2018/papers/119-Santiago-
AI%20Driven%20Test%20Generation.pdf
 (accessed August 1, 2019).

Silver, David. 2018. “A general reinforcement learning algorithm that masters chess, shogi, and Go
through self-play.” Science: Vol. 362, Issue 6419 (Dec 2018), pages 1140-1144

