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Abstract 

Mob programming is a software development approach where the whole team works on the 
same thing, at the same time, in the same space, at the same computer (Zuill 2016). Mob 
programming is all about collaboration, teamwork, helping others, and developing great 
software. With it, we get improved communication, consistent exchange of knowledge, 
enhanced idea generation, and more learning.  

 
 In my organization, we mob program on every aspect of our production code. Every line of 
code, every test, every release is developed using mob programming. Because of the high 
quality of our software developed with mob programming, we went a year and a half without any 
bugs reported in our production software. The software we release is developed drastically 
different because of mob programming. 
 

In this paper, we will explore how the mob programming software development approach 
produces quality software in my organization. 
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1 Mob Programming Fundamentals 

1.1 What is Mob Programming? 

“All the brilliant minds working on the same thing, at the same time, in the same space, on the same 
computer.” (Zuill 2016) In my organization, we mob program on every aspect of our production code. 
Currently, we have nine separate mobs working full time.  

 
So, what does mob programming look like in my organization? We have up to five developers all 

working together at the same time on the same thing driving the software forward. We do all software 
development practices together: architecture design, code development, testing, deployment, kanban, 
prioritization, EVERYTHING. It may help to think of mobbing as a more extreme version of pair 
programming. Instead of two people working together, we generally have up to five members all working 
together. 
 
 We may be at a single computer, but we are not huddled closely together around one small screen. 
We have one desktop computer attached to 80-inch monitors with multiple desks surrounding the 
monitors. We have plenty of space to sit, work, and move around. The image below is an actual mob set-
up.  
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1.2 How did Mob Programming Begin? 

“Having an environment where awesome things can happen, pretty much guarantees that awesome 
things WILL happen.” (Zuill 2016) 
 

Mob programming did not start overnight. Mobbing has continually improved over the past seven 
years, starting slowly and expanding into what it is today.  

 
It began with a teammate that needed help with a feature they were tasked to complete. They did not 

feel like they would meet the deadline, so they called upon their peers for help. They all got together in a 
conference room. They collaborated and worked together to come to a solution and did end up meeting 
their deadline. The team enjoyed working together and continued it. They held a retrospective every day 
to discuss their progress. 

 
The collaboration, working on the same task and daily retrospectives continued. With each 

retrospective, they found ways to improve their processes and work better together. Eventually, they were 
given a permanent space to mob program.  
 

This was the very beginning of mob programming. It has now, seven years later, expanded to nine 
mobs in my organization. We want to always find ways to turn up the good and mob programming worked 
well for the team. Mob programming is still evolving today but began because a group of people saw it as 
a beneficial way to develop software.  

 

1.3 Driver-Navigator Model 

When people first think of mob programming, they often think of it as one person at the keyboard 
writing the code while the others watch. It is not like that at all. We take a much stricter paradigm coined 
“Driver-Navigator”. The person at the keyboard is the driver while everyone else is a navigator. The driver 
is not allowed to implement their ideas. They are taking the input of the navigators and translating that 
into code. 
 

Llewellyn Falco expressed the statement that “For an idea to go from your head into the computer, it 
MUST go through someone else’s hands”. The navigators describe their ideas in English to the driver, 
who then translates that into code. If an idea cannot be explained in plain English and understood by the 
driver, then it would not go into the code.   

 
For the driver-navigator model to work, it is crucial to ensure the driver is never talking through their 

ideas and coding at the same time. It is the responsibility of everyone on the mob to ensure that this does 
not happen.  
 

We have found that the driver-navigator model forces people to have to explain and discuss ideas 
with others. At a minimum, one other person, the driver, has to understand the idea enough to put it into 
code. The shared understanding of the code and being forced to explain code in English brings out 
quality code.  

 
The driver-navigator roles are also not static. They change often. Using a timer, we rotate roles 

between driver and navigator, so everyone gets a chance to present ideas and navigate through the 
solution. Depending on the team, rotations are done each five to fifteen minutes. The forced rotation gives 
everyone the chance to navigate and prevents one person from navigating the code endlessly. 

 
While the driver and navigator are essential roles in mob programming, there are many other roles 

that can be present. For more information on the driver-navigator roles and the other roles that can be 
seen in a mob, take a look at Mob Programming: The role-playing game (Larsen 2016) or the IBM 
experience report on mob programming patterns (Keeling 2019). 
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1.4 Zero Bugs 

In my organization, we have a set of lofty goals. The lofty goals are meant to be statements that we 
would want to be true if we were in the perfect software development environment. One of the lofty goals 
is to have zero bugs in production.  

 
Zero bugs may seem like an unattainable goal for most teams, but the first mob team at my 

organization was able to improve the quality of the software being released to the point of having zero 
reported bugs in production for a year and a half. Having zero bugs was made possible because they 
were mob programming. 

 
To this day, we still have very few bugs. When a bug is reported, it becomes the top priority for the 

team. We only return to feature development once the bug has been resolved. We have so few bugs that 
we do not use a software bug tracking tool. Each project has a physical whiteboard to be used as a 
kanban board to keep track of tasks. The board is broken into three sections: To Do, Doing, and Done. 
When a bug is reported it goes immediately into the Doing column. The kanban boards gives us and 
interested stakeholders visibility into what we are currently doing, what has been completed, and what still 
needs to be done.  

2 Ways Mob Programming Creates Quality 

2.1 Communication 

The number one benefit of mob programming is communication. We are face to face with our 
teammates for the entire day. We are always talking to one another. The driver-navigator model forces us 
to be continually collaborating, working together, debating ideas, etc. The immense amount of 
communication that occurs in a mobbing environment breeds quality software. 
 
 Fewer formal meetings need to occur when mobbing. If we need to discuss something as a team, we 
are already together. If a product owner wants to see our progress, we are all together ready to give a 
demo. Mob programming as defined by the Agile Alliance, “Ironically through the use of ongoing, "working 
meetings” Mob Programming ensures that work, knowledge creation and decision making are joined 
together thus leading to much better alignment and more effective action.” (Mob Programming) 
 
 Questions get answered immediately. If we do not understand why we are doing something in the 
code, we can stop and get our questions answered. We do not need to struggle through confusing code 
on our own. We do not have to queue up questions to ask a coworker once they are available. Mobbing 
allows us to ask for help and clarification from those around us immediately. 

 

2.2 Knowledge Sharing 

When you have a group of three or more people all working on the same feature at the same time, 
knowledge is shared amongst the individuals. We code through the solution together, sharing how and 
why we made our decisions. 

 
Jason Kerney describes how mob programming benefits from systems like transactive memory. If 

multiple people share the same experience, they are then able to remember different aspects of that 
experience. They can recall the information better and put all the pieces together (Kerney 2015).  

 
It is not possible to remember every piece of a solution. However, with mob programming, the shared 

experience of coding through a solution means we can, as a team, better remember how and why 
something was done.  
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We have a shared redundant knowledge of the software among the team. Quality is increased 
because of the transactive memory and shared experiences in a mob.  

 

2.3 Idea Generation & Development 

With mob programming, we are no longer working alone to come up with solutions to our architecture, 
implementation, and testing problems. We have multiple team members to discuss ideas with face to face 
immediately. One study came to the following conclusion that mob programming led to a more creative 
problem-solving environment. They came up with higher quality solutions because of the mobbing 
environment that they were in (Aune 2018). 
  
 Having a group of people to work together with through a problem together also helps to reduce 
stress. I never feel as if the entire responsibility of finding the right solution lies solely on me. I can leave 
at the end of the day not worried about how I would take on the next day’s tasks. I know I have my 
teammates to help tackle the hard problems together.  
 

Quality is heightened when we generate our ideas together as a team. We come up with more 
creative solutions to our problems and experience less stress around having to solve every problem 
alone. 

 

2.4 Elevated Learning 

When programming in any setting, we are always learning. Learning how to use a new tool, 
framework, language, or technique. In a mob, we are always sharing what we learn with each other. 
Knowledge is quickly disseminated among the team.  
 

Karel Boekhout studied a mob programming team and found that the team had grown much faster in 
development skills and development processes while mob programming, compared to traditional 
individual development (Boekhout 2016). The group setting of the mob is conducive to learning. We gain 
the knowledge of the others on the team.  

 
I joined a new project team that used a mobile development technology that I had never used before. 

Nine months after joining that team, I accepted a position as a lecturer to teach that very same 
technology at a local university. Going from zero knowledge to teaching a university-level course on the 
subject would not have been possible for me had I not been mobbing. 

 
We are encouraged to share and encouraged to bring everyone around us up to the same level. The 

interactions and navigation in mobbing lead to amplified learning. Quality is increased when everyone is 
learning more and at a fast pace.  
 

3 Mob Programming Things to Consider 

3.1 The Work Environment 

The mobs in my organization are all collocated together in a single building. We do all of our work on-
site and do little to no work remotely. Having the teams together, face to face is an important aspect that 
has made mob programming successful for us.  

 
It has been studied that there is a correlation between the proximity of teams and the amount of 

collaboration on the teams. By having our mobs close all the time, we can achieve the highest level of 
collaboration (Kiesler 2002). Mob programming is all about collaboration and is a big part of how we 
create quality software.  
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Some teams perform mob programming remotely; INNOQ is one example. They have put together an 

excellent resource for how they successfully mob program remotely (Harrer). Remote mobbing may work 
for some teams, but at my organization, we do almost all our work onsite.  

 
A time-lapse video published to YouTube titled “A Day of Mob Programming 2016” gives an overview 

of our work environment and what we do every day. 
(https://www.youtube.com/watch?v=dVqUcNKVbYg&t=1s). 

 

3.2 Mob Team Size 

Having an infinite number of team members could bring quality to a whole new level. However, we 
know this is impossible, and there must be a maximum number of people on a mob team to prevent 
benefits from declining or stagnating.  

 
As of writing this paper, few formal scientific studies have been conducted revolving around mob 

programming, especially team size. Yet, there has been a large number of studies surrounding pair 
programming. Woody Zuill breaks down mob programming, using data from pair programming studies, to 
provide estimates of the correlation between team sizes, costs, and the quality of work produced.  

 
It is hard to provide an exact number that makes up the perfect mob. However, based on the work 

completed by Zuill and my empirical evidence, mobs should be made of four or five members. Zuill’s 
extrapolations found diminishing returns with team sizes any larger than six. For a full breakdown of Zuill’s 
calculations, see section 3.10 titled A Simple Cost Analysis of Mob Programming in his book “Mob 
Programming A Whole Team Approach” (Zuill 2016). Zuill goes into details of costs effectiveness, 
expected quality metrics, and effects of the mob team size.  

 

3.3 Developer Fatigue 

Mob programming requires a lot of focus. Working with a group of people and trying to focus on 
development tasks all day can be very draining. One study found that mob programming, “strengthens 
the team, but can also be draining on energy and mood because of the intense focus required”. (Aune 
2018) 

 
In an experience report by Aaron Griffith, he talks about how mob programming can be draining and 

over stimulating especially for introverts. Being among a group of people, and having little to no alone 
time can be demanding (Griffith 2016). 

 
Having dedicated breaks and time to complete personal tasks can help alleviate fatigue. In my 

organization, we mob for up to 7 hours a day. We then have one hour of learning time a day that can be 
done individually or in a group. This learning time can be the perfect opportunity to be alone, learning 
something and recharging. 

 
Mob programming is still something that takes some getting used to. In order to keep the quality high 

and consistent, we need to ensure we do not overwork ourselves.  
 

3.4 Team Psychological Safety 

For mob programming to be successful, teams need to be psychologically safe. Team members must 
feel comfortable to challenge one another, be able to share constructive feedback, and trust each other. 
Just being kind to one another is not enough. Feeling comfortable enough to give candid feedback and 
have a healthy debate is vital to creating quality software. 

 

https://www.youtube.com/watch?v=dVqUcNKVbYg&t=1s
https://www.youtube.com/watch?v=dVqUcNKVbYg&t=1s
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In a study completed by Google, they found that psychological safety was the number one factor in 
how successful their teams were. They described psychological safety as “Team members feel safe to 
take risks and be vulnerable in front of each other” (Rozovsky 2015). Psychological safety is not about 
just being polite, but instead being able to be vulnerable with one another. Google has proved it is what 
leads to truly outstanding teams.  

 
Psychological safety can be built up over time by framing work as a learning problem, being able to 

acknowledge fallibility, and modeling curiosity (Edmonson 2014). In order to create quality software, we 
need to feel safe with one another. 

4 Conclusion 

In my organization, we have found mob programming to be a successful methodology for developing 
quality software. The nine mobs work full time every day on production code because of the results we 
have experienced.   

 
The quality that comes with increased communication, spreading of knowledge, creative idea 

generation, and heightened learning has led us to mob on all aspects of our production software. Mob 
programming is very different from traditional programming and has its obstacles like the work 
environment, developer fatigue, and requiring psychological safety. However, when mob programming is 
done well, it can be very conducive to creating high-quality software.  

 
If you are interested in learning more about mob programming or getting started with mobbing 

yourself, Woody Zuill’s book, Mob Programming A Whole Team Approach available on LeanPub is a 
great first resource. It goes deeper into what mobbing is, how to start mobbing on your teams, and the 
problems mobbing tries to alleviate. 
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