Why We Need New

Software Testing
Technologies

CAROL OLIVER, PH.D.
OCTOBER 2019




How has the Context of
Software Changed?

MAJOR PHASES OF COMPUTING AND SOFTWARE
TESTING



The Earliest Computers

/ ki AL * Extremely Few Computers

_-/ ! - e Each an Individual
* Built for Special Purposes
* |ts Own Language

NECEE

o000 060 )
200 300

Software Execution Environment:
* 100% Known




Commercial Mainframes

* Still a Small Number of Computers
* Tens and Hundreds
* A Few Types / Manufacturers

e Built for General-Purpose Use
e Languages reused across many
computers

| Software Execution Environment:
* Largely Similar




Early Desktop Computing

* Many Computers
* Thousands for General-Purpose Use
* Dozens of Types / Manufacturers

e Customizable: Many Different Peripherals
* Each speaking its own language
* Each with unique capabilities
e Each with specific restrictions

Software Execution Environment:
* Many Variations
* Wildly Unpredictable

(Dozens by Hundreds of Variations)




B Many, Many Computers
* Tens of Thousands of Customizable
Computers
* Dozens of Types / Manufacturers

e QOperating Systems Defined Interfaces for
Peripherals to Use to Communicate
* Capabilities of Peripherals Standardized

Software Execution Environment:
* Many Variations
* Relatively Predictable

(Dozens by Dozens of Variations)




Mobile Computing (1 of 2)

 Computers, Computers Everywhere!
* Millions of Computers
e Thousands of Types /
Manufacturers

* Many with Built-in “Peripherals”

e Sensors and Interfaces

e Each with Possibly Unique
Capabilities

e Each with Possibly Unique
Restrictions

e Each with Possibly Unique
Communications Interface

* OS Components Possibly Customized
(common on Android)




Mobile Computing (2 of 2)

Software Execution Environment:
* Many Variations

* Wildly Unpredictable
(Thousands by Hundreds of Variations)




Therefore...

* \Vaster scale and scope of environmental complexity
in Mobile and loT era

* Requires testing that efficiently handles vast

environmental complexity




What Types of Testing
Efficiently Handle Vast
Environmental Diversity?

RELEASE-READINESS LEVELS FRAMEWORK



Release-Readiness Levels Framework (1 of 2)

Increasing Scope

— Development Focus
Dev Testing s * About finding a way to make something
work

Level 1: .
Testing

Ready to Test Focus .

Testing Focus

Level 2 * About challenging what’s been created to
Eloselycantralie see if it will hold up no matter what adverse

circumstances occur

Level 3:
Predictable Variations

Two Creative Efforts

Level 4 e Shared Purpose: Produce Successful
Discovers Unexpected Software

» Different —and Contradictory — Goals

Level 5:
Exhausted Capacities




Release-Readiness Levels Framework (2 of 2)

Level o:

Dev Testing

Level 1:

Ready to Test

Level 2:

Closely Controlled

Level 3:
Predictable Variations

Level 4:
Discovers Unexpected

Level 5:

Exhausted Capacities

This framework is NOT about:
e Any specific SDLC
e Who does what and when

This framework IS about:

 What work it is possible to do

 Why doing that work may be
worthwhile

This talk limits its attention to
Functionality Testing.




Level 0: Dev Testing (1 of 2)

S ing Goal: Has intended functionality
been implemented?

Level 1: )
Testing

Ready to Test Focus Typical Tests: Very small aspects of behavior
analyzed separately from all other behaviors of

il the program.
Closely Controlled Prog

()]
Q.
o
o
wv
oD
E
wv
18]
[
—
o
s

. Examples:

evel 3: )

Predictable Variations * Unit Tests

e Style Checkers

[t e Other Static Code Analyzers

Discovers Unexpected

Level 5:
Exhausted Capacities




Level 0: Dev Testing (2 of 2)

()]
Q.
o
o
wv
oD
E
wv
18]
[
—
o
s

Level 0:

Dev Testing

Level 1:

Ready to Test

Level 2:

Closely Controlled

Level 3:
Predictable Variations

Level 4:
Discovers Unexpected

Level 5:
Exhausted Capacities

Development
Focus

Testing
Focus

Software Released at Level O:
* May contain missing, partly-functional, and
incomplete features
May not install cleanly into any environment
other than Development Environment
May not work as a cohesive whole even if it
installs cleanly

Professional software development shops usually
test further than this before product release.




Level 1: Ready to Test (1 of 2)

v
a
o
U

w
et}

£
wv
(5o}
v
S
g
=

Level o:

Dev Testing

Development
Focus

Level 1:

Ready to Test

Level 2:

Closely Controlled

Level 3:
Predictable Variations

Level 4:
Discovers Unexpected

Level 5:
Exhausted Capacities

Testing
Focus

e Goal: Is software ready to be
challenged by Testing Focus work?

» Typical Tests: Surficial functionality testing, just
enough to show whether program crashes with

trivial ease or permits access to all features of
current interest.

Examples:
* Smoke tests
* Simple happy-path scenarios

* Most common / predictable error scenarios



Level 1: Ready to Test (2 of 2)

v
a
o
U

w
et}

£
wv
(5o}
v
S
g
=

Level o:

Dev Testing

Development
Focus

Level 1:

Ready to Test

Level 2:

Closely Controlled

Level 3:
Predictable Variations

Level 4:
Discovers Unexpected

Level 5:
Exhausted Capacities

Testing
Focus

* Software Released at Level 1:

e Should install properly into expected operating
environments

* May break if used even slightly differently than
anticipated

* Via user action
* \Via data state

* Via non-tested operating environment



Level 2: Closely Controlled (1 of 2)

e Goal: Do features work when
Dev Testing 29 challenged by tests with carefully
o controlled parameters?

Level o:

Level 1: ’
Testing

Ready to Test Focus

e Typical Tests: Very brief runs of the app to test a
Level > specific behavior, followed by resetting app to a
Closely Controlled clean state before running next test.

v
Q.
o
]
wn
jolo]
c
0
©
[
e
o]
o

Examples:

Level 3:

Predictable Variations * Tests with hardcoded test data

e * Tests using data drawn from small lists for different
Discovers Unexpected runs

Level 5:
Exhausted Capacities




Level 2: Closely Controlled (2 of 2)

* Software Released at Level 2:

Level o:
Development

Dev Testing Focus * Likely to suffer many field failures on systems
that differ from Development and Testing
Level 1 Testing Environments

Ready to Test Focus
* May break if used in unanticipated ways

Level 2:

Closely Controlled * May break if used on a continuous basis for

some block of time

Increasing Scope

Level 3:
Predictable Variations

Level 4:
Discovers Unexpected

Level 5:
Exhausted Capacities




Level 3: Predictable Variations (1 of 2)

| * Goal: Do features work when test
Dev Testing conditions are significantly loosened?

Level 0:

Kl Testing Typical Tests: Intensely vary one or a few variables
Ready to Test Fogus . . .

while holding others constant, to assess impact of
those specific variations.

Level 2:

Closely Controlled

Examples:

()]
Q.
o
o
wv
oD
E
wv
18]
[
—
o
=

Level 3: * Very large sets of very similar hardcoded tests

Predictable Variations
* Tests that iterate through large, hardcoded lists of

possible values

Level 4:

Discovers Unexpected » Short runs of tests that generate data at runtime
based on a seeded random number generator

Level 5:
Exhausted Capacities




Level 3: Predictable Variations (2 of 2)

* Software Released at Level 3:

Level o:
Development

Dev Testing Focus * Markedly more stable in a diverse variety of

conditions than software released at Level 2

[fevels: .
Ready to Test esiig (Closely Controlled)

* May still experience a moderate number of field

Level 2: failures
Closely Controlled

» Unexpected patterns of use

w
Q.
[}
v}
n
jels]
£
w
©
[
—
>
ic

Level 3: o * Untested environmental conditions
Predictable Variations

e Untested data conditions

Level 4:

e The more aspects of environmental

unpredictability not tested, the higher the

Level 5 likelihood of finding many problems after
Exhausted Capacities release




Level 4: Discovers Unexpected (1 of 2)

Lolce S Goal: Uncover problems that no one
ev Testing Focus . :
on the project could predict,
Level . sometimes that no one on the
Ready to Test Focus . a o
project could imagine.

Level 2:
Closely Controlled * Modern programs are complex and contain many

tacit dependencies with themselves, their operating
environment, and their data.

()
o.
o
Y
2]
=)
£
wv
o
[
| -
U
=

Level 3:

Predictable Variations

Typical Tests: Stress the program and its

bl operating environment at great scale.
Discovers Unexpected * Many use HiVAT (High Volume Automated
Testing) techniques to efficiently run

Levels: hundreds of thousands, millions, or scrillions
Exhausted Capacities of specific tests




Level 4: Discovers Unexpected (2 of 2)

()
o.
o
Y
2]
=)
£
wv
o
[
| -
U
=

Level o:

Dev Testing

Level 1:

Ready to Test

Level 2:

Closely Controlled

Level 3:

Predictable Variations

Level 4:
Discovers Unexpected

Level 5:

Exhausted Capacities

Development
Focus

Testing
Focus

Examples:

Long-duration runs of tests that do not tidy
up between tests

Random variations of structured input
(fuzzing)

Long-sequence tests interleaving a few
actions that should not have side effects,
repeated many, many times

etc.

Software Released at Level 4:

Experiences some field failures, when

combinations not reached by intensive
testing discovered in the field

Failures are rarer than at earlier levels




Level 5: Exhausted Capacities (1 of 2)

eolee wmmml (Goal: For testing efforts to exhaust
evTestlng Focus . .. . c
— their capacities, given the
Level resing capabilities of available tools and
Ready to Test Focus . o c
techniques and the time available.

Level 2:

Closely Controlled » Typical Tests:

* Dramatically increase stresses upon the
Level 3: o software and its operating environment
FEdeEbeN e e Sampling scope approaches closer to
exhaustive

System testing increases the variations in
exercising interleaved, cooperating, and
coexisting features

[
o
S)
(¥
wm
o0
=
v
©
(0]
—_
U
c

Level 4:
Discovers Unexpected

Level 5:

Exhausted Capacities




Level 5: Exhausted Capacities (2 of 2)

[
o
S)
(¥
wm
o0
=
v
©
(0]
—_
U
c

Level o:

Dev Testing

Level 1:

Ready to Test

Level 2:

Closely Controlled

Level 3:

Predictable Variations

Level 4:
Discovers Unexpected

Level 5:

Exhausted Capacities

Development
Focus

Testing
Focus

This level of testing intensity typically done
when the risk of failure is extremely high
* E.g. Data-processing logic that could corrupt
the database if done wrong
* E.g. Life-support systems
e E.g. High-impact infrastructure systems, etc.

Historical Example: Y2K Testing

Software Released at Level 5:
* Experiences the fewest possible field
failures
e But some failures remain possible




Levels vs. Environmental Diversity

Release-Readiness Level

0 (Dev Testing)

1 (Ready to Test)

2 (Closely Controlled)

3 (Predictable Variations)
4 (Discovers Unexpected)

5 (Exhausted Capacities)

Environmental Diversity
None

Barely Any

Very Little

Little to Moderate

Vast Capacity

Vast Capacity

* Handling Environmental Unpredictability
for Mobile and loT Software:

* Requires Level 3 (Predictable Variations)
tests

* Requires Level 4 (Discovers Unexpected)
tests

* Some critical behaviors within many apps
deserve Level 5 (Exhausted Capacities)
tests

* Some whole systems may merit Level 5
(Exhausted Capacities) tests

* Example: Autonomous Vehicles




Which Testing Levels are
Enabled by Current
Technologies and Tools?

CORE SOFTWARE TESTING TECHNOLOGIES



Core Software Testing Technologies

Present in today’s readily available tools and the academic research literature:
Physical Devices

Virtual Devices (Emulators and Simulators)

Simulation Environments

Mechanisms for interacting with the Visual GUI Tree
Image-comparison

Code Manipulation (e.g. xUnit, code instrumentation, etc.)
System Monitoring

LT o () b

Each technology:
* Enables certain kinds of tests
* |s better-suited to some types of investigations than others

Existing tools:
* Fulfill a technology’s potential to differing degrees




1. Physical Devices (1 of 3)

1. Physical Devices What:

* Actual physical devices, local or remote

Technology Strength:

e Trustworthy realism about how apps will behave on that
device.

Greatest Weakness:

* Difficulty scaling to many thousands of platforms.




1. Physical Devices (2 of 3)

1. Physical Devices Current Best Solution: Cloud-based access to Physical Devices

* Hundreds to a Few Thousands of device/OS version
combinations

* Devices located in server rooms
e Little variety in physical or network environments

e Little scope for exercising embedded sensors and other
equipment on devices

» Testing limited to features of interfaces (frameworks) provided
by the cloud service




1. Physical Devices (3 of 3)

1. Physical Devices Release-Readiness Levels Assessment (at scale):

e Level 2 (Closely Controlled)

* Very little can be inferred about stability of software on
other devices based upon its behavior on one device.

e Testing tens or even a few hundreds of devices is still a small
fraction of the possible many thousands of devices.

* At scale, only robustly testing combinations of basic hardware
and OS version.

* No varied environmental conditions such as seen by mobile
devices out and about in the real world.




2. Virtual Devices (1 of 3)

2. Virtual Devices

What:

» Software illusions of real devices using different computing
hardware and resources. (Simulators and “Emulators”)

Technology Strength:

* Easy, cheap access to a variety of device variations.

Greatest Weakness:

e Trustworthiness.




2. Virtual Devices (2 of 3)

Virtual Mobile Devices model:

2. Virtual Devices

CPU, OS Version, RAM

Screen size, resolution, pixel density (if device has a screen)

Virtual Mobile Devices commonly do NOT model:

Camera, GPS, accelerometer, microphone, speakers, gyroscope,
compass

Sensors for ambient light, pressure, temperature, humidity,
proximity

Network connections like Bluetooth, Wi-Fi, NFC (Near Field
Communication)

Cellular connections like 3G, 4G, etc.




2. Virtual Devices (3 of 3)

2. Virtual Devices

Android Virtual Devices:
* Apply a stock version of Android OS

* Do NOT include customizations done by the hardware
providers (usually proprietary)

* Do NOT include customizations done by the cell service
providers (usually proprietary)

Release-Readiness Levels Assessment:
e Level 1 (Ready to Test)

* Information obtained is only a ghost of reality



3. Simulation Environments (1 of 2)

What:

 Virtual representations of various aspects of the world

3. Simulation : : :
surrounding a mobile or 10T device.

Environments
* Theoretically allow an in-house lab to generate many

thousands of realistic deployment scenarios, as well as
scenarios that are questionable in terms of reality but
powerfully informative for testing purposes.

Technology Strength:

* Rich exercise of widely varied environmental conditions.

Greatest Weakness:

* Accessibility.




3. Simulation Environments (2 of 2)

Release-Readiness Levels Assessment:

* Level 3 (Predictable Variations) potential

3. Simulation
Environments * Level 4 (Discovers Unexpected) potential

* Level 5 (Exhausted Capacities) potential

* Used to a limited extent in academic research

* No apparent access for practitioners (at this time)




4. Visual GUI Tree (1 of 3)

What:

* Interact with the display-rendering hierarchy of objects drawn
for the GUI.

4. Visual GUIl Tree e Contain visible elements like buttons but also invisible
elements like grids that organize the visual layout.

Technology Strength:

* Excellent at replicating how humans interact with a GUI.

Greatest Weakness:

* Depends on uniquely-identifiable objects.

* GUI Programming is changing, so that objects with unique
identifiers are less likely to exist.




4. Visual GUI Tree (2 of 3)

Visual GUI Tree Tools are the dominant form of test tools today.

* Mobile Native Apps: Appium, Calabash, Espresso, Robotium;
Android Ul Automator, XCTest, XCUITest

4. Visual GUI Tree * Cloud Services Examples: AWS Device Farm, App Center Test,

Bitbar, Experitest, Kobiton, Mobile Labs, pCloudy, Perfecto
Mobile, Sauce Labs, Xamarin Test Cloud

* Web applications: Selenium




4. Visual GUI Tree (3 of 3)

4. Visual GUI Tree

Release-Readiness Levels Assessment:

e Level 2 (Closely Controlled)

* Tests tend to hardcode data which are repeated verbatim
each run

* Tools rarely offer features to parameterize the data

* Tools even more rarely offer features to determine test data
programmatically at run time

Cannot trigger situations initiated by sensors, only those initiated
by user actions.

* Does not touch most of environmental complexity problem.




5. Image-comparison (1 of 2)

5.

Image-comparison

What:
* Full-Image Comparison: Every pixel must match.

* Part-lmage Comparison: Finds a specific small image within a
full-screen picture.

* Examples: Eggplant, Sikuli
Technology Strength:

 Excellent for handling Visual Meaning scenarios.

* Visual Meaning scenarios = Those in which a picture most accurately
conveys the meaning and all else merely points at the meaning.

Greatest Weakness:

* Only handles fully-visible elements of GUI.




5. Image-comparison (2 of 2)

5.

Image-comparison

Release-Readiness Levels Assessment:

* Level 2 (Closely Controlled)
* Tests look for specific, hardcoded reference image data

* Existing tools poorly handle variations in size, style
* Cannot address functionality not visible onscreen

Cannot trigger situations initiated by sensors, only those initiated
by user actions.

* Does not touch most of environmental complexity problem.

(Excellent complement to Visual GUI Tree tools but NOT a complete
replacement of them.)




6. Code Manipulation (1 of 2)

What:

* Many types of code analysis and modification.
* All utilize insight into the code’s details.

* All techniques require programming.

6. Code Manipulation Technology Strength:

* Immense potential, limited only by human capacity to address
the problem.

Greatest Weakness:
* Rapid Complexity

* Some of the required knowledge is very deeply technical.

* People with that knowledge are rarely in testing positions.




6. Code Manipulation (2 of 2)

Release-Readiness Levels Assessment:

* Level 3 (Predictable Variations) potential

* Level 4 (Discovers Unexpected) potential

* Level 5 (Exhausted Capacities) potential

6. Code Manipulation

Tools that propagate to industry typically encapsulate a small set
of behaviors.

e xUnit frameworks
* Code coverage tools

 Style checkers

* etc.




7. System Monitoring (1 of 2)

7. System Monitoring

What:

* All mechanisms for observing and noting system behavior
while an app is running.

* Including built-in features to a program providing extensive
diagnostic interface.

Technology Strength:

* Monitors are robust for core computing elements and
network communications.

Greatest Weakness:

e Little available to monitor sensors and other embedded
equipment.




7. System Monitoring (2 of 2)

Release-Readiness Levels Assessment:

* Most commonly: Level 2 (Closely Controlled)

* Level 4 (Discovers Unexpected) potential

e Requires extensive built-in diagnostics features

7. System Monitoring




Technology vs. Testing Levels

Testing Technology Testing Levels Enabled by the
Technology — At Scale

1. Physical Devices 1 (Ready to Test)

2 (Closely Controlled)

2. Virtual Devices 0 (Dev Testing)
(Emulators and Simulators) 1 (Ready to Test)

3. Simulation Environments 3 (Predictable Variations)
4 (Discovers Unexpected)
5 (Exhausted Capacities)

4. Visual GUI Tree Interactions 2 (Closely Controlled)
5. Image-Comparison 2 (Closely Controlled)

6. Code Manipulation

3 (Predictable Variations)
4 (Discovers Unexpected)
5 (Exhausted Capacities)

7. System Monitoring 2 (Closely Controlled)

4 (Discovers Unexpected)

Testing Levels Enabled by
Accessible Tools — At Scale

1 (Ready to Test)
2 (Closely Controlled)

0 (Dev Testing)
1 (Ready to Test)

Limited availability in academia
No apparent practitioner access

2 (Closely Controlled)
2 (Closely Controlled)

Tools typically custom one-offs
Programming expertise required

2 (Closely Controlled)




Therefore...

* Existing tools leverage technology ill-suited to this
need

* Therefore we need new tools leveraging suitable
technology




What Kinds of New
Testing Tools?

VISION OF A NEW GENERATION OF SOFTWARE
TESTING TOOLS



Requirements for Next Generation Testing Tools

1. Directly target functionality dealing with embedded sensors and
equipment

2. Scale easily to vast variations in data readings, data fidelity, data delivery
methods, etc.

3. Constrain technological complexity to be within reach of non-specialists

By “non-specialists” | mean:

* Experienced software testers

* With competent, generalist programming skills

» Without special technical expertise in any subsystems comprising mobile/loT computing environments
* Without special technical expertise in mathematical modelling

Further down the road, it may be possible to create more generally-accessible tools, as has already happened
with code coverage tools and style checkers.




A Tool I've Imagined

* Combine Integration Testing and Compiler Knowledge

Tester defines both a Beginning Point and 1+ Ending Points for data flow of interest
* May also define specific Intermediate Monitoring Points to snapshot data state

Tester defines static starting-state date

Tester defines pattern for operational data submitted to program’s environments via

sensors

Tool executes that path within the program for the specified duration

Tester and Tool interpret the data results harvested from the Ending Points

* Enables rich Simulation Environment testing on custom slices of functionality

Without requiring fully-featured reality-based environments

Without requiring testers to understand all the underlying code

Just the intent of the feature, how to manipulate data at the endpoints, and how to
monitor intermediate data states




Example: Bicycle Ride Tracking App

e Scenario: A long, mountainous training ride
* Among its features, one tracks Total Height Climbed during the ride
* Likely involves Accelerometer, Gyroscope, GPS
* If available, also Magnetometer and Barometer
* Happy-Paths: Perfectly functioning sensors with instantaneous responses

* Realistic Environment Challenges:
* GPS outages, low signal strength, slow responses, erroneous data
* Sensor outages/erroneous data when very hot (valleys) or very cold (mountain tops)
or quickly transitioned between extremes
* A mountain descent can easily change 50F in 20 minutes
* Other sources of interference, affecting sensor operations: Humidity, metal bridges,
high power lines, etc.




Example: Things to Vary

Starting position (including altitude)
Ending position (including altitude)

Length of training ride

Pattern of noise in each sensor’s data during the ride
% Good data

% Late responses

% Error codes

% Missing responses

% Nonsensical data values




Recap

Mobile and loT computing operate within a fundamentally different scale and scope of
environmental complexity than in prior computing eras.

Accurately assessing field performance of software for such devices requires testing at
* Level 3 (Predictable Variations)
* Level 4 (Discovers Unexpected)
* Level 5 (Exhausted Capacities)
Existing testing tools enable testing at
* Level 1 (Ready to Test) — common
* Level 2 (Closely Controlled) — very common
* Testers making tools reach partially into Level 3 (Predictable Variations)

Mobile and 10T need testing tools that
* Directly handle vast environmental unpredictability
* QOperate efficiently at great scale




In Closing

Large and Complex Problem

What types of tools can
you imagine that would

be useful to the field?

carol@carolcodes.com



