

TWITTER: @jamesshore
EMAIL: jshore@jamesshore.com
WEB: jamesshore.com
GITHUB: github.com/jamesshore

Pacific Northwest Software Quality Conference
October 15, 2019

Agile Without Dedicated QA

James Shore

mailto:jshore@jamesshore.com

Nancy van Schooenderwoert

60,000 embedded SLOC over 3 years

Best-in-class expectation: 460 defects

Actual result: 51 defects

Copyright QSM Associates, Inc.

Trendline Assessment – Defects/Quality
Defects During Test

100 1,000

Effective SLOC (thousands)

10

100

1,000

10,000

E
rrors (S

ysInt-D
el)

Rel 5.0

Rel 6.0 Rel 6.5
Rel 7.5 Rel 7.0

Rel 8.0

Rel 5.0

Rel 6.0 Rel 6.5
Rel 7.5 Rel 7.0

Rel 8.0

Business Sy stems Av ionic Sy stems Command & Control Microcode Sy stems Process Control QSM 2005 Business
Av g. Line Sty le 1 Sigma Line Sty le

Far Fewer Defects: 50% - 66% Below Industry

E
xc

er
p

te
d

 fr
o

m
 M

ic
h

ae
l M

ah
 P

N
SQ

C
 2

0
1

0
 p

re
se

n
ta

ti
o

n
:

“T
h

e
G

o
o

d
, t

h
e

B
ad

, a
n

d
 t

h
e

P
u

zz
lin

g:
 T

h
e

A
gi

le
 E

xp
er

ie
n

ce
 a

t
5

 C
o

m
p

an
ie

s”

h
tt

p
s:

//
w

w
w

.in
d

u
st

ri
al

lo
gi

c.
co

m
/a

n
-a

gi
le

-x
p

-t
ra

n
si

ti
o

n
-c

o
n

ti
n

u
es

-t
o

-t
h

ri
ve

/

~100K SLOC
~20 defects

~70K SLOC
~40 defects

~20K SLOC ~12 defects

~200K SLOC
~500 defects

~360K SLOC
~1,000 defects

Programmer Errors

Defect-Prone Designs

Requirements Misunderstandings

Systemic Blind Spots

Programmer Errors

jamesshore.com

Guessing Game v1

• Person 1: Think of a whole number between 1 and 100.

• Person 2: Make four different guesses of the number,
each at least 5 digits apart.
🚫 51, 52, 53, 54 ✅ 51, 56, 61, 66

• Person 1: Say how many guesses were high, low, or right
on, but don’t say which guess is which.

• Repeat, four guesses at a time, until you’ve guessed the
number, then switch.

jamesshore.com

Guessing Game v2

• Person 1: Think of a whole number between 1 and 100.

• Person 2: Make one guess of the number.

• Person 1: Say if the guess was high, low, or right on.

• Repeat, one guess at a time, until you’ve guessed the
number, then switch.

jamesshore.com

Think

Red

Green

Refactor

jamesshore.com

Why TDD Works Better

• Better Tests: Work is fine-grained, covering more edge
cases.

• Improved Self-Discipline: It’s easier to write tests as you
go, and there’s less temptation to move on to the next
thing.

• Fast Feedback: TDD is a series of small, validated
hypotheses.

jamesshore.com

End-to-End Tests

Test

Interface
Code

Code

Code

Code

Database

Code

jamesshore.com

Focused Integration Tests

Test

Database

Code

jamesshore.com

Unit Tests

Test Code

jamesshore.com

Follow the Test Pyramid

Unit Tests
Proportional to Amount of Code

Focused Integration Tests
Proportional to Number

of External Systems

E2E Tests
Few as Possible

Te
st

 P
yr

am
id

 o
ri

gi
n

al
ly

 c
o

n
ce

iv
ed

 b
y

M
ik

e
C

o
h

n
 w

it
h

 L
is

a
C

ri
sp

in
, 2

0
0

4
.

A
d

ap
te

d
 b

y
Ja

m
es

 S
h

o
re

, 2
0

1
9

.

jamesshore.com

Beware the Test Ice Cream Cone

Unit Tests
Sort of

E2E Tests
Used for Everything

Expensive and Unreliable
Take Hours to Run

Random FailuresTe
st

 Ic
e

C
re

am
 C

o
n

e
o

ri
gi

n
al

ly
 c

o
n

ce
iv

ed
 b

y
A

lis
te

r
Sc

o
tt

, 2
0

1
2

.
A

d
ap

te
d

 b
y

Ja
m

es
 S

h
o

re
, 2

0
1

9
.

jamesshore.com

Think

Red

Green

Refactor

jamesshore.com

Prevent Programmer Errors

Test-Driven Development
Pairing or Mobbing
Energized Work

Programmer Errors

Defect-Prone Designs

Requirements Misunderstandings

Systemic Blind Spots

Defect-Prone Designs

jamesshore.com

Think

Red

Green

Refactor

jamesshore.com

Think

Red

Green

Refactor

jamesshore.com

B
as

ed
 o

n
 D

om
ai

n-
D

ri
ve

n
D

es
ig

n
by

 E
ri

c
E

va
n

s

jamesshore.com

Prevent Defect-Prone Designs

Merciless Refactoring
Evolutionary Design

Programmer Errors

Defect-Prone Designs

Requirements Misunderstandings

Systemic Blind Spots

Requirements
Misunderstandings

jamesshore.com

Requirements Game v1

1. On the bottom half of the handout, write instructions,
words only, to reproduce the picture on your handout. If
you have two pictures, choose the easiest one. (5 min)

2. Tear off instructions and exchange with someone in a
row above or below yours. Keep your pictures hidden.

3. Use the other person’s instructions to reproduce their
picture. Don’t communicate in any other way. (5 min)

4. Compare results.

jamesshore.com

Requirements Game v2

• Work with the same person as before. One of you will
have another picture, the other will have a blank square.
You’ll have 5 minutes total.

• Person with picture: Tell the other person how to
reproduce your picture. Keep it hidden. Words only, no
gestures or props.

• Person with blank square: As the talker describes their
picture, reproduce it in your blank square. You can ask
questions and show your progress.

Chemist /
SME

Chemist /
Prod Mgr

UX
Designer

Tech
Writer

jamesshore.com

Prevent Misunderstandings

On-Site Customers
Customer Examples
Customer Review

Programmer Errors

Defect-Prone Designs

Requirements Misunderstandings

Systemic Blind Spots

Systemic Blind Spots

E
xc

er
p

te
d

 fr
o

m
 “

I’l
l L

et
 M

ys
el

f I
n

: T
ac

ti
cs

 o
f P

hy
si

ca
l P

en
 T

es
te

rs
”

by
 D

ev
ia

n
t

O
lla

m

P
re

se
n

te
d

 a
t

W
ild

 W
es

t
H

ac
ki

n’
 F

es
t,

 2
0

1
7

 y
o

u
tu

b
e.

co
m

/w
at

ch
?v

=
rn

m
cR

Tn
T

N
C

8

jamesshore.com

How to Fix a Bug

• Fix the bug. Write a unit test, fix the code.

• Fix the design. What about the software design allowed
this bug to hide from view? Refactor to make this
category of bugs impossible or obvious.

• Fix the process. What enabled this type of bug to exist in
the first place? Look at systems, processes, and habits,
not people. Can they be improved?

• Explore further. Based on what we’ve learned, what
similar bugs are likely to exist? Find and fix them, too.

BUGS ARE FOR OTHER PEOPLE

jamesshore.com

Prevent Systemic Blind Spots

Exploratory Testing
Root-Cause Analysis
No Bug Database (‘Tude)

Max
Value

jamesshore.com

Nancy van Schooenderwoert

60,000 embedded SLOC over 3 years

Best-in-class expectation: 460 defects

Actual result: 51 defects

Copyright QSM Associates, Inc.

Trendline Assessment – Defects/Quality
Defects During Test

100 1,000

Effective SLOC (thousands)

10

100

1,000

10,000

E
rrors (S

ysInt-D
el)

Rel 5.0

Rel 6.0 Rel 6.5
Rel 7.5 Rel 7.0

Rel 8.0

Rel 5.0

Rel 6.0 Rel 6.5
Rel 7.5 Rel 7.0

Rel 8.0

Business Sy stems Av ionic Sy stems Command & Control Microcode Sy stems Process Control QSM 2005 Business
Av g. Line Sty le 1 Sigma Line Sty le

Far Fewer Defects: 50% - 66% Below Industry

E
xc

er
p

te
d

 fr
o

m
 M

ic
h

ae
l M

ah
 P

N
SQ

C
 2

0
1

0
 p

re
se

n
ta

ti
o

n
:

“T
h

e
G

o
o

d
, t

h
e

B
ad

, a
n

d
 t

h
e

P
u

zz
lin

g:
 T

h
e

A
gi

le
 E

xp
er

ie
n

ce
 a

t
5

 C
o

m
p

an
ie

s”

h
tt

p
s:

//
w

w
w

.in
d

u
st

ri
al

lo
gi

c.
co

m
/a

n
-a

gi
le

-x
p

-t
ra

n
si

ti
o

n
-c

o
n

ti
n

u
es

-t
o

-t
h

ri
ve

/

~100K SLOC
~20 defects

~70K SLOC
~40 defects

~20K SLOC ~12 defects

~200K SLOC
~500 defects

~360K SLOC
~1,000 defects

jamesshore.com

Prevent Blind Spots

Exploratory Testing
Root-Cause Analysis
No Bug Database (‘Tude)

Prevent Misunderstandings

On-Site Customers
Customer Examples
Customer Review

Prevent Defect-Prone Designs

Merciless Refactoring
Evolutionary Design

Prevent Programmer Errors

Test-Driven Development
Pairing or Mobbing
Energized Work

TWITTER: @jamesshore
EMAIL: jshore@jamesshore.com
WEB: jamesshore.com
GITHUB: github.com/jamesshore

Pacific Northwest Software Quality Conference
October 15, 2019

Agile Without Dedicated QA

James Shore

mailto:jshore@jamesshore.com

