Agile Without Dedicated QA

James Shore

@jamesshore

jshore@jamesshore.com

jamesshore.com Pacific Northwest Software Quality Conference
github.com/jamesshore October 15, 2019

mailto:jshore@jamesshore.com

The Art of

Agile

O’REILLY*

Developmel

—

/THEORY/IN/PRACTICE

) .
41 ‘.J~'"
(Ll
J

N

.~

e &,
«

James Shore & Shane Warden

THE AGILE FLUENCY MODEL

CHART YOUR AGILE PATHWAY

PRE-AGILE

SHIFT
Team Culture

SHIFT

Team Skills ™ DELIVERING

SHIFT
Organizational

Structure

SHIFT l
mmmmm Organizational
Culture

FLUENCY

agilefluency.org

Copyright 2012-2018 James Shore and Diana Larsen.
“Agile Fluency” is a trademark of James Shore and Diana Larsen.
You may reproduce this diagram in any form so long as this notice
is preserved.

Run Test Sune

oM novell dewnet

TestAns(MeveloperSute

%t{eme |
Programming

%lained

EMBRACE CHANGE

KENT BECK
with CYNTHIA ANDRES

Foreword by Erich Gamma

Second Edition

EXTREME PROGRAMMING

OKAY,HERES A
STORY: YOU GIVE
ME ALL OF MY
FEATURES OR T'LL
RUIN YOUR LIFE.

AND EACH FEATURE
NEEDS TO HAVE
WHAT WE CALL A
“USER STORY."

I CANT GIVE YOU
ALL OF THESE
FEATURES IN THE
FIRST VERSION.,

scottadams® aol.com

l’c"-’-';'-’zl 82002 Unitted Feature Syndicate, Inc

www.dilbert.com

Copyuright ¢ 2683 United Feature Syndicate, Inc.

Nancy van Schooenderwoert
60,000 embedded SLOC over 3 years

Best-in-class expectation: 460 defects
Actual result: 51 defects

“The Good, the Bad, and the Puzzling: The Agile Experience at 5 Companies”

Excerpted from Michael Mah PNSQC 2010 presentation:

Project Management

QSM ASSOCIATES That Learns From Experience

Trendline Assessment — Defects/Quality

4 .
Defects During Test
—10,000
—————————————————————————————— —1,000
; R
/ Rel 6_0 bt Rel 6-5 ® B ;
® Rel 7.5 Rel 7.0 — =] g
Rels.0[% T -100
. o o
Far Fewer Defects: 50% - 66% Below Industry :
]] 1 T L]] L] L] 10
100 1,000
Effective SLOC (thousands)
® — Business Systems m — Avionic Systems ® — Command & Control Microcode Sy stems ® — Process Control QSM 2005 Business

Avg. Line Style = --------- 1 Sigma Line Style

Copyright QSM Associates, Inc.

https://www.industriallogic.com/an-agile-xp-transition-continues-to-thrive/

Defects

10000

1000

100

10

System Test and QA Defect Trendline

............ ~360K SLOC
Pt — ® ~1,000 defects
e ~200K SLOC 1o ditional 1
4 e ® ~500 defects
1 e Traditional 2
~70KSLOC e
1 ® ~40defects .

— Agile1
Jhconoooon—n HE0OCaa00a0009 000080008000 90000 000 H 00000 .?'
| i ~20KSLOC @ ~12defects .. Agle2 |
- Agile3 . :
i . ~100K SLOC
T ™ i ~20 defects
| I I | | | I | :l I | I I | | | I
10 100 1000

New plus Modified Code (thousands)

V

nnwe-

Programmer Errors
Defect-Prone Designs
Requirements Misunderstandings

Systemic Blind Spots

Programmer Errors

Guessing Game vl

e Person 1: Think of a whole number between 1 and 100.

e Person 2: Make four different guesses of the number,
each at least 5 digits apart.

© 51, 52, 53, 54 51,56, 61, 66

e Person 1: Say how many guesses were high, low, or right
on, but don’t say which guess is which.

e Repeat, four quesses at a time, until you've guessed the
number, then switch.

jamesshore.com

Guessing Game vZ

e Person 1: Think of a whole number between 1 and 100.
e Person 2: Make one guess of the number.
e Person 1: Say if the quess was high, low, or right on.

e Repeat, one quess at a time, until you've guessed the
number, then switch.

jamesshore.com

Think

Red

I Green

Refactor

[NN tdd-intro [~/Documents/Projects/tdd-intro] - .../src/parse.js [agile2019]
N | Project v €3 = @ — = README.md - 4o score_testjs « ;' scorejs * geu parse testjs » ;' parsejs
E v [tdd-intro [agile2019] ~/Do¢ 1 // Copyright Titanium I.T. LLC. v
= » M build 2 "use strict";
[== 3
» BN generated : ¢ d = ¥ rlowt dString) {
» B node_modules library rog . SEROIESRCRIE = R A SOl Ll A1)
v M src 6 }i
» Il cli
3 _parse_test.js
Je. _score_test.js
55 parse.js
js score.js
< .gitignore
= build.cmd
= build.sh
= clean.cmd
= clean.sh
= LICENSE.txt
is narkana ienan
v
Think
&
b
>
&
ol
*
g b
0l
Refactor
®
-,
S
0
r~I

(\> jamesshore.com Q Event Log
O L/ letscodejavascript.com 6:3 LF* UTF-8% Tab* Gitvideos* W & 5

Why TDD Works Better

e Better Tests: Work is fine-grained, covering more edge
cases.

o Improved Self-Discipline: It's easier to write tests as you
go, and there’'s less temptation to move on to the next
thing.

e Fast Feedback: TDD is a series of small, validated
hypotheses.

jamesshore.com

nd-to-€End Tests

1S

Watching om mis as Did | mention that you should
by @jamesshore and enjoyinga addictive as Game of Thrones. watch @jamesshore
beer. Good stuff. The lessons | HBO better watch out letscodejavascript.com? Its THE
mean, the beer | have is crap. reference for professional agile
@i development!
@enhancic
@guaski

Start Your Free Trial Today!

$2495 $9950

Inte

‘Seven-day ree tria, then $24.95 per month ‘Seven-day freo tria, then $99.50 per month
(‘plus VAT in EU). 30-day money-back (*plus VAT in EU). 30-day money-back
guarantee. Cancel any time. guarantee. Cancel any time.

Let's Code JavaScrpt s provided by Titanium |T. LLC, a United States company. When you sign up,
we collect your email address and payment Information so we can provide you with your subscripton.
(More detals.)

Why Subscribe?

Run Adobe Fash

JavaScript Needs Test-Driven Development

1 youve programmed in JavaScrpt, you know that s .. Interesting.. language.

Dont get me wrong: love JavaScrip. | love s frstclass unctions, th intensive VM
kers, and t defitly

hasits good parts

Italso has some not-so-good parts. Whether it browser DOMs, automaic semicolon
inserton, or an object model with a spit prsonalfy, everyone's had some part of
Thats

important

Le's Code: Test.Driven JavaScript s a screencast series focused on igorous,
professional web development. That means test-criven development,of course, and also
techniques such as build aulomation, continuous integration, refactoring, and
evolutionary design. We support muliple browsers and piatiorms, including 10S, and we,
use Node s on the server.

A Screencast for Professionals

Let's Code: Test Driven JavaSeript s created for professional developers. Its mterial
that you can use immediately to improve your work and develop your career.

Database

Pro-Level Content

We focus onthe we
to code well,

e
qualty and maintainabilty matter.

Real World Development

appication and
the real world. Mistakes, setbacks, and triamphs:i's all there for you to see and leam
from,

Bite-Sized, Focused Content

e 1, al the time. Every episode that
developers. fordigesting
on your commte or walching during lunch.

Hundreds of Episodes, Dozens of Topics

There's over 600 episodes and nearly 200 hours of content. Topics range from the
DOM) to

th problems and
. th new o leam.

Deep Experience

James Shore has been developing software professionally since 1994, and he's been
leading teams in
1999, /s Gordon Pask
Agie P of
experience shines through i every episode.

Frequently Asked Questions

How suitable s the series for someone who doesn't know JavaScript already?

Very suitablel Ifyou're an experienced programmer, the ‘Recorded Live" channel s
i pick up. if " the *How Tof
channel will introduce you to JavaScript as needed.

How does billng work?

you
that time, you will never be charge.

Aftr seven days, your card wil be charged automatcalyfor each month i advance.

jamesshore.com

Focused Integration Tests

Database

Unit Tests

Follow the Test Pyramid

E2E Tests
Few as Possible

Focused Integration Tests
Proportional to Number
of External Systems

Unit Tests

Proportional to Amount of Code

Test Pyramid originally conceived by Mike Cohn with Lisa Crispin, 2004.

Adapted by James Shore, 2019.

jamesshore.com

Beware the Test Ice Cream Cone

E2E Tests
Used for Everything
Expensive and Unreliable
Take Hours to Run

Unit Tests
Sort of

Test Ice Cream Cone originally conceived by Alister Scott, 2012.

Adapted by James Shore, 2019.

Random Failures

jamesshore.com

Think

Red

I Green

Refactor

e NERITYI .'\| / ST ’l
:. . . | . i l ! .-i : }

\

g |

Prevent Programmer Errors

Test-Driven Development
Pairing or Mobbing
Energized Work

Programmer Errors
Defect-Prone Designs
Requirements Misunderstandings

Systemic Blind Spots

Defect-Prone Designs

Think

Red

I Green

Refactor

IS 0-Q | 8#H 6 |®c | P IE

|\
=

'@ JUnit 52

Finished after 0.0"14 seconds

Runs: 4/4 B Errors: 0 B Failures: 0

o= === fe e se= ecmsiEEnE TS ==t =S = ng L

QueryString query = new QueryString("");
assertEquals(@, query.count());

}
- @Test
public void testNull() {
try {
b QueryString query = new QueryString(null);
fail("should throw exception™);
}
catch (NullPointerException e) {
// expected
}
}
- @Test

public void testOneNameValuePair() {
QueryString query = new QueryString("name=value™);
assertEquals(1l, query.count());
assertEquals("value", query.valueFor("name"));

}

- @Test
public void testMultipleNameValuePairs() {
QueryString query = new QueryString("namel=valuel&n
assertEquals(3, query.count());
assertEquals("valuel"”, query.valueFor("namel"));
assertEquals("value2", query.valueFor("name2"));
assertEquals("value3", query.valueFor("name3"));

— —

package com.jamesshore.tdd_demo;
public class QueryString {
private String _query;

: public QueryString(String queryString) {
if (queryString == null) throw new NullPointerE

_query = queryString;
}

= public int count() {
if ("".equals(_query)) return 0;

String[] pairs = _query.split("&");
return pairs.length;

}

= public String valueFor(String name) {
HashMap<String, String>|

String[] pairs = _query.split("&");
for (String pair : pairs) {

String[] nameAndValue = pair.split("=");

if (nameAndValue[@].equals(name)) return na
}

throw new RuntimeException(name + " not found")

| T

] U Writable

Smart Insert ALt

Think

Red

I Green

Refactor

v
. S

cC o

k S

2

&

3 o .

5 Breakthrough
S R

8

S

@ Time/Refactoring

jamesshore.com

SavingsAccount

Prevent Defect-Prone Designs

Merciless Refactoring
Evolutionary Design

Programmer Errors
Defect-Prone Designs
Requirements Misunderstandings

Systemic Blind Spots

Requirements
Misunderstandings

Requirements Game vl

1. On the bottom half of the handout, write instructions,
words only, to reproduce the picture on your handout. If
you have two pictures, choose the easiest one. (5 min])

2. Tear off instructions and exchange with someone in a
row above or below yours. Keep your pictures hidden.

3. Use the other person’s instructions to reproduce their
picture. Don't communicate in any other way. (5 min]}

4. Compare results.

jamesshore.com

Requirements Game vZ

e Work with the same person as before. One of you will
have another picture, the other will have a blank square.
You'll have 5 minutes total.

e Person with picture: Tell the other person how to

reproduce your picture. Keep it hidden. Words only, no
gestures or props.

e Person with blank square: As the talker describes their
picture, reproduce it in your blank square. You can ask
questions and show your progress.

jamesshore.com

UX

Designer

SameLg DISPLAY AVAILAL 14
~fo 'y 15 EOVTAR LE

-r
>

Chemist / Chemist /

SME Prod Mgr N

l ' Writer
V-

R

¥

Prevent Misunderstandings

On-Site Customers
Customer Examples
Customer Review

Programmer Errors
Defect-Prone Designs
Requirements Misunderstandings

Systemic Blind Spots

Systemic Blind Spots

&£
.
—
-
-
-
-
QO
-
-
—
5
e
-
p..«
o
v
D
4
7
o
—
O

Jea

8ONLULYoWuUI=A;4yd}em/wod3gqninoA /T 0T 3594 UDj2eH ISSAA PIIM 3e pajuasa.d
we||O ueinaq Aq S193159] Uad |edIsAyd Jo So132e] :u| J|9SAIA 397 |1, WO.4 paidaadx]

PrThe atic

ogrammers

Explore It!

Reduce Risk and
Increase Confidence with
Exploratory Testing

Elisabeth Hendrickson

Edited by Jacquelyn Carter

Egireq pi qacdrefily CoLeL.

How to Fix a Bug

e Fix the bug. Write a unit test, fix the code.

e Fix the design. What about the software design allowed
this bug to hide from view? Refactor to make this
category of bugs impossible or obvious.

e Fix the process. What enabled this type of bug to exist in
the first place? Look at systems, processes, and habits,
not people. Can they be improved?

e Explore further. Based on what we've learned, what
similar bugs are likely to exist? Find and fix them, too.

jamesshore.com

> R .

BUGS ARE FOR OTHER'REOPLE

F

arw
[

% “L“l e Avam OO :

v-on.omn-"‘ ,

g

\ -~ _."' :
- "

See
uu‘:‘“-u l.l"“'- o
5 ANGES, S 1V 00 L

w

.a-—h.-—

‘ . --‘—‘-" /
-

Ranrl
— e

Prevent Systemic Blind Spots

Exploratory Testing
Root-Cause Analysis
No Bug Database (‘'Tude)

%t{eme |
Programming

%lained

EMBRACE CHANGE

KENT BECK
with CYNTHIA ANDRES

Foreword by Erich Gamma

Second Edition

(A S & %

vav:

EMBRACE CHANGE

Nancy van Schooenderwoert
60,000 embedded SLOC over 3 years

Best-in-class expectation: 460 defects
Actual result: 51 defects

“The Good, the Bad, and the Puzzling: The Agile Experience at 5 Companies”

Excerpted from Michael Mah PNSQC 2010 presentation:

Project Management

QSM ASSOCIATES That Learns From Experience

Trendline Assessment — Defects/Quality

4 .
Defects During Test
—10,000
—————————————————————————————— —1,000
; R
/ Rel 6_0 bt Rel 6-5 ® B ;
® Rel 7.5 Rel 7.0 — =] g
Rels.0[% T -100
. o o
Far Fewer Defects: 50% - 66% Below Industry :
]] 1 T L]] L] L] 10
100 1,000
Effective SLOC (thousands)
® — Business Systems m — Avionic Systems ® — Command & Control Microcode Sy stems ® — Process Control QSM 2005 Business

Avg. Line Style = --------- 1 Sigma Line Style

Copyright QSM Associates, Inc.

https://www.industriallogic.com/an-agile-xp-transition-continues-to-thrive/

Defects

10000

1000

100

10

System Test and QA Defect Trendline

............ ~360K SLOC
Pt — ® ~1,000 defects
e ~200K SLOC 1o ditional 1
4 e ® ~500 defects
1 e Traditional 2
~70KSLOC e
1 ® ~40defects .

— Agile1
Jhconoooon—n HE0OCaa00a0009 000080008000 90000 000 H 00000 .?'
| i ~20KSLOC @ ~12defects .. Agle2 |
- Agile3 . :
i . ~100K SLOC
T ™ i ~20 defects
| I I | | | I | :l I | I I | | | I
10 100 1000

New plus Modified Code (thousands)

Prevent Programmer Errors Prevent Defect-Prone Designs

Test-Driven Development Merciless Refactoring
Pairing or Mobbing Evolutionary Design
Energized Work

Prevent Misunderstandings Prevent Blind Spots

On-Site Customers Exploratory Testing
Customer Examples Root-Cause Analysis
Customer Review No Bug Database (‘Tude)

Agile Without Dedicated QA

James Shore

@jamesshore

jshore@jamesshore.com

jamesshore.com Pacific Northwest Software Quality Conference
github.com/jamesshore October 15, 2019

mailto:jshore@jamesshore.com

