Iron Chef Cucumber
Cooking up software requirements
that get great results
Chris Cowell
PNSQC 2020

Iron Chef Cucumber

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›

Agenda
The problem with requirements
Cucumber in 60 seconds
9 best practices (relevant outside Cucumber too)
Lots of examples

Iron Chef Cucumber

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
Here’s the structure of the talk:

First, I’ll discuss why requirements are so important and why they’re so hard to deal with.

Then I’ll spend one minute explaining what Cucumber is, for those of you who haven’t heard of it before.

Finally (and this is 95% of the talk) I’ll present 9 best practices for writing requirements with Cucumber

I’ll include lots of examples, both of how to do things wrong, and how to fix them using the best practices I describe.

Away we go!

Requirements
Critical part of any software project
Used by everyone on the team
No standards for how to write them
Best practices from 2 years of Cucumber at Cambia

Iron Chef Cucumber

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
Let’s talk about requirements for a second. Software are the first, and arguably the most important thing that a dev team will work on, other than the software itself. Anybody who’s involved with creating software -- in almost any role -- has to deal with requirements at some point. You might be developing the software, or testing it, or documenting it, or marketing it -- it doesn’t matter. No matter what your role is, you have to know what the software is supposed to do. At the risk of stating the obvious, that’s why requirements are so important.

But, there’s a problem. There really isn’t any widely adopted, standard tool that I know of for writing requirements. And there’s also no standard for what those requirements should look like -- what format they should be in, what their syntax should be, and so forth. Cucumber is one tool you can use to write requirements, and it’s a tool that I like and recommend. The problem with Cucumber is that it seems so simple at first that you can be lulled into using it in sloppy or careless ways that prevent it from being as useful as it can be. And I think having lots of people using Cucumber badly at a company can be worse than not using it at all -- bad Cucumber can sour people on the technology and cause them to abandon it before they really get a good sense of its power, which is too bad.

My background in Cucumber is that I used it for 2 years at Cambia, a health insurance and medical services company. I used it first as a practitioner (when I was a QA person), and then later I used it as a coach, helping teams throughout the company to learn it and use it correctly. Cambia’s understanding of how to use Cucumber effectively evolved a lot over those 2 years. Eventually we developed solid best practices. It’s only now that I feel like I have a decent grasp of it, and I finally understand what a great tool it can be for anyone who deals with requirements. The best practices I show you today are sort of the “greatest hits” of the many best practices we came up with -- these are the things that give you the most impact for the least effort.

Cucumber in 60 seconds
Tool for writing, managing, and testing requirements

Enables Behavior-Driven Development

Iron Chef Cucumber

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
To make sure we’re all on the same page, let’s spend one minute introducing Cucumber. Cucumber is a free, open-source software tool and set of processes to help you write, manage, and test software requirements.

It was created to help teams use a particular style of software development called Behavior Driven Development, but you can use Cucumber to help with requirements no matter what approach your team takes. If you haven’t used behavior driven development before, I think of it a variant of test driven development. Behavior-driven development focuses on user-level behavior, and how the user interacts with your software’s features, rather than low-level behavior of the code. It’s a great software development style, but that’s a topic for a different presentation.

Today I’m only going to talk about how Cucumber can help you write requirements. It would be a shame to use actually Cucumber only in that way, and to ignore the powerful ways it helps you manage and test requirements. But time is short, so we’ll just cover the most basic Cucumber usage, which is concerned with writing requirements.

Cucumber in 60 seconds
Requirements are called “scenarios”

 Scenario: Require login
 Given Anne is not logged in
 When she navigates to any page in the app
 Then it redirects her to the login screen

Iron Chef Cucumber

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
In Cucumber, each requirement that you write is called a “Scenario”. A scenario has a title and a series of steps, which we call Given/When/Then steps. Each step either describes a state of the system (which is a line that starts with “Given”), an action a user performs (which is a line that starts with “when”) or a result of that action (which is a line that starts with “then”).

So in this example, we’re specifying what should happen a user tries to use a web app without logging in. To paraphrasing the Given/When/Then steps: If the user isn’t logged in, any attempt to go directly to a page within the app will result in the user being redirected to the login page.

This Given/When/Syntax is the central focus of Cucumber -- it’s what Cucumber is best known for.

Cucumber in 60 seconds

 Scenario: Require login
 Given Anne is not logged in
 And the system does not recognize her IP address
 When she navigates to any page in the app
 Then it redirects her to a login screen
 And it gives her the option to create a new account

Iron Chef Cucumber

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
There’s one more detail to know:

you can add lines that begin with the word “And” to make the “Given” or “Then” steps more complicated, such as I’ve done here. It usually doesn’t make sense to add an “And” line to a “When” step. This is because each scenario is supposed to test a single action by the user, and a single “When” step is all you need to capture that single action.

Setting the scene

Iron Chef Cucumber

Rose City Artisanal Ice
https://www.artisanal-ice.com

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
For the rest of this talk, let’s pretend that we work for a fictional startup called Rose City Artisanal Ice that sells high-priced, unnecessarily fancy custom-made ice. It looks and tastes exactly like the ice you buy from 7-11 at one-tenth the price, but that’s beside the point.
We’re developing a web app for customers to order ice, and we’re using Cucumber to write requirements for that web app.
With this scenario in mind, let’s dive into the best practices for writing requirements in the form of Cucumber scenarios.

Iron Chef Cucumber
#1
Write like you talk

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
Our first best practice: Write like you talk!

In other words, write requirements using a natural, normal tone and everyday vocabulary. Write as if you were having a conversation with a friend and explaining the requirement to them.

This might sound like obvious advice, but it’s a common problem; I see it all the time in the real world. People often write requirements using a style they would never use when talking with a colleague. Sometimes they write in a compressed or cryptic way, probably thinking that this seems more “high tech” somehow, or is more efficient. Other times they write too much, using convoluted, complicated language. This probably comes from a belief that more words is better than fewer words, or a belief that longer scenarios make them sound smarter? I don’t really know. But in both of those cases, the requirement becomes hard to read and understand.

Write like you talk
Scenario: filter source
 Given Barbara searches ice
 When filter set to spring water
 Then sees only spring water ice

Iron Chef Cucumber

too compressed

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
Let’s look at some examples.
Imagine you want to capture a requirement saying that the user can filter ice options according to where the water comes from. For example, let me see only ice that comes from spring water.
Well, here’s a bad way to write that requirement. <NEXT>
It’s bad because it’s not how you would talk to somebody <NEXT> -- it’s too compressed, it leaves out too many words. As a result it winds up being confusing.

Write like you talk
Scenario: filter the results of a search for ice, using
 the source of the water from which it is made
 Given Barbara is searching for ice but would like that
 search to exclude ice made from any water source
 other than her preferred source of spring water
 When ...
 Then ...

Iron Chef Cucumber

too verbose

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
Here’s an example that’s bad in the opposite direction: it’s too verbose. I’ll give you a second to appreciate it’s hideousness. By the way, this is not an exaggeration -- I really have seen scenarios written in this overblown style.

Scenario: filter ice by water source
 Given Barbara is searching for ice
 When she filters out ice not made from spring water
 Then the results show only spring water ice
Write like you talk

Iron Chef Cucumber

It sounds like a sentence you might actually say!

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
This example strikes a good balance. <NEXT>

It sounds like an actual sentence a real person might say:

“We have this feature that lets you filter ice according to its water source. If you search for ice and filter out ice not made from spring water, then you only see spring water ice.”

Iron Chef Cucumber
#2
Be careful with logic

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
Next up: be careful with your logic.

Double- or triple-check any requirements that use logical terms like “and,” “or,” “not,”, “all,” and “only”.

Even though programmers are used to thinking carefully about logic as they code, it’s easy for them—and anyone else who writes Cucumber scenarios—to overlook logical nuances in ways that break their requirements.

Be careful with logic
Scenario: filter ice by region of origin
 Given Claire is searching for ice
 When she requests only Alaskan ice
 Then the results show all the Alaskan ice options

Iron Chef Cucumber

bad logic

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
For example, say you want the app to let users filter ice by place of origin, so you can see only ice from a particular part of the world.
You might write the requirement like this.
<NEXT>
But this contains bad logic! <NEXT> Can you spot the problem? I’ll give you a second.
Hint: the problem is in the THEN statement.

Be careful with logic
Scenario: filter ice by region of origin
 Given Claire is searching for ice
 When she requests only Alaskan ice
 Then the results show only the Alaskan ice options

Iron Chef Cucumber

correct logic

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
The problem is that the results should include ONLY the Alaskan ice options, not ALL the Alaskan ice options. After all, if they had all the Alaskan ice options and also options from other parts of the world, the app isn’t really doing what the user wanted it to.
This problem of confusing all vs. only can cause tests to pass when they should fail, or fail when they should pass.
Logical mistakes like this are easy to make and commonly found in the wild. They make it impossible to know whether your software does what you want it to. So always double-check your usage of logical terms and make sure the scenario accurately captures your intention.

Iron Chef Cucumber
#3
General titles, concrete steps

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
The third best practice is to give your scenarios general titles that describe the requirement, but use specific, concrete data in the steps that show the requirement in actual use.

This will make a lot more sense if we look at some examples.

Scenario: flag malformed shipping ZIP
 Given Diana is ready to check out
 When she enters 9720 for her ZIP
 Then she gets an error asking her to correct the ZIP
General titles, concrete steps
general
concrete

Iron Chef Cucumber

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
Say we have a requirement that the web app show some sort of error message when the user enters an invalid ZIP code in their shipping address
Here’s a scenario that captures that requirement and follows this best practice.
<NEXT> You can see that the title is kept general, not referring to any specific malformed ZIP code.
<NEXT> The WHEN step, on the other hand, includes a concrete malformed ZIP that illustrates the general requirement.
Including concrete details in steps whenever possible improves your scenarios in several ways: they become more vivid, more powerful, easier to read, and easier to remember. This is important when a stakeholder is trying to read and understand 200 scenarios without falling asleep.

Iron Chef Cucumber
#4
Don’t overuse Cucumber

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
The fourth best practice is not to overuse Cucumber. This is one of the few parts of the presentation that really is specific to Cucumber, and not to requirements-writing in general.

Don’t overuse Cucumber
Happy paths
The most critical unhappy paths
Plain English for other everything else

Iron Chef Cucumber

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
Cucumber isn’t intended to capture every last nuance of every feature: it’s too heavyweight for that.
So don’t write a Cucumber scenario for everything a user might conceivably do: every error condition, every odd workflow, and every possible operation and permutation. It just becomes too expensive to write and maintain all those countless scenarios.
Also: it’s exhausting to read hundreds of similar scenarios, and understand them, and see differences between them. Honestly, nobody can do that. And the point of Cucumber is to make software requirements as easy as possible for all stakeholders to share and approve.
<NEXT> So instead of trying to be cover absolutely everything with Cucumber, I recommend you focus on happy paths <NEXT> and a small number of the most-critical unhappy paths. By “most critical” I mean either the most common unhappy paths, or paths that are most catastrophic when they occur, or paths that developers are most nervous about.
<NEXT> For all other requirements, use the least formal process your company will let you get away with. Plain English sentences are ideal, if that’s OK with your team.

Don’t overuse Cucumber

Scenario: change password
 When Elizabeth changes her password to “p@ssw0rd$$$”
 Then she’s redirected to the login page
 And she can log in with the new password

Iron Chef Cucumber

happy path

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
Here’s an example of a classic happy path. When you’re writing requirements for the “password change” feature, you’d better capture the most common case of successfully changing a password!

Don’t overuse Cucumber

Scenario: change password to invalid new password
 When Elizabeth changes her password to “ABC”
 Then she sees a warning that it’s too short
 And she sees a prompt to enter a new password

Iron Chef Cucumber

one unhappy path

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
And now you want to pick maybe one or two of the most critical unhappy paths to capture in Cucumber scenarios. Imagine that your security team says that the biggest potential security problem is passwords that are too short. So that’s a great candidate for a critical unhappy path to put into a scenario.

Iron Chef Cucumber
#5
Focus on features, not controls

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
Cucumber scenarios are intended to describe how people use your software’s features, not how they interact with its GUI controls.
So you should rarely, if ever, refer to buttons, text fields, drop-down menus, or other GUI elements. Instead, talk about what the user is trying to do -- what’s their intention when they use your software?

Focus on features, not controls

Iron Chef Cucumber
Scenario: check out
 Given Francis has finished adding items to her cart
 When Francis clicks the “checkout” button
 And she completes the “shipping address” fields
 And she completes the “billing info” fields
 And she clicks the “pay now” button
 And she clicks the “confirm payment” button
 Then she is shown the “order complete” page
 And she sees “thank you for shopping with us”
 And she sees “tracking number is <TRACKING NUMBER>”

GUI controls

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
For example, here’s a badly written scenario for the check-out process. You can see that it refers to tons of GUI controls. <PAUSE>

Capturing every click, typed character, or displayed message makes the scenario WAY too long.

And if you asked the user what she was doing, she wouldn’t explain her action at this level of detail. She’d just say “I’m done shopping, so I’m checking out.”

Scenario: check out
 Given Francis has finished adding items to her cart
 When she checks out
 Then she sees an order confirmation message
 And she sees a shipment tracking number
Focus on features, not controls

Iron Chef Cucumber

captures user’s intention

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
This better-written scenario explains what she’s trying to do, not how she’s doing it.
This one is shorter, easier to understand, and more relevant to stakeholders because it captures the behavior of the software’s feature rather than its controls.

Of course it’s a good idea to have a complete set of requirements for all the controls, but those should be in the form of design specs or wireframe diagrams, and not Cucumber scenarios.

Iron Chef Cucumber
#6
Use personas

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
Our sixth best practice is one of my favorites: use personas.
Personas are fictional users that you put in your scenarios to make them feel more real.
They’re defined with a formal syntax. I’ll discuss this in a minute, but maybe you can already guess what that syntax is?
Personas are shared with all stakeholders, so everyone has a common understanding of who might want to use the software, and what features they’d be especially interested in. Let’s look at some examples.

Use personas

Iron Chef Cucumber
Gretchen: security-conscious user
changes password daily
pays with Bitcoin
doesn’t store shipping info
Hannah: typical user
frequently changes email subscriptions

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
We might want to define two personas for our web app: Gretchen and Hannah.
Let’s say that Gretchen is a user who is particularly concerned with security. We’ll specify a few details about her, and then use her in any security-related scenarios.
Hannah might be a more typical user with the one quirk of making frequent changes to her email subscription settings. We’d probably use her in the majority of our scenarios, and definitely in any email-related scenarios.

Use personas

Iron Chef Cucumber
Given the user enters invalid Bitcoin account info
Given Gretchen enters invalid Bitcoin account info

Given a user unsubscribes from the daily email
Given Hannah unsubscribes from the daily email

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
So we’d specify Gretchen or Hannah as the actors in scenarios. It might look like this: <NEXT> x 2
Instead of saying “the user,” or “you”, we use a persona’s name. This GIVEN step looks like it belongs to a scenario that talks about how our app handles billing with Bitcoin, so we’d use Gretchen. <NEXT> x 2
This GIVEN step comes from a different scenario, one that deals with email subscriptions. Since this is something Hannah is concerned with, we’ll use her as the actor here.

Use personas

Iron Chef Cucumber
Define personas in... Cucumber scenarios!

Scenario: define persona of Gretchen
 Given Gretchen has a Rose City Artisanal Ice account
 And she has the password “VanillaIce”
 And she has stored Bitcoin info
 And she has not stored shipping info

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
Here’s the mind-bending, Inception-like way we define personas <NEXT>: we use more Cucumber scenarios.
Here’s an example of how we might define Gretchen. <NEXT> x 2
These persona-definition scenarios are odd looking, since they only have GIVEN statements, but they follow the same syntax as the scenarios we use to capture requirements.
In this case, all the GIVEN statements have to do with security, since that’s her main focus.
You might be wondering if it would be easier to just define personas in normal English paragraphs? Yes, in a sense it would. But remember that Cucumber scenarios can also be used as runnable tests. If we run this persona-definition scenario as a test, it can confirm that the persona of Gretchen is configured correctly in the Rose City Artisanal Ice customer database before we run the rest of the tests.
For example, say the Bitcoin info in Gretchen’s account accidentally gets deleted. This scenario would fail, which would warn us that other Bitcoin-related scenarios will fail as well, since they rely on Gretchen’s Bitcoin info. So we would know to fix her Bitcoin info before we re-run those other scenarios.

Iron Chef Cucumber
#7
Present tense, active voice

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
The next best practice, is really a 2-for-1 combo, both dealing with grammar. We recommend that you use the present tense in all of your steps, and use the active voice whenever possible.

Present tense, active voice

Iron Chef Cucumber
Scenario: view cart
 Given Isabelle added 2 items to her cart
 When she views her cart
 Then she will see those items in alphabetical order

inconsistent tense

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
Let’s look at tense first <NEXT>. There’s a strong temptation to write GIVEN statements in the past tense, WHEN statements in present tense, and THEN statements in future tense, like you see in this example.
And there’s a certain logic to doing that. When I’m not being careful, I always fall into exactly that pattern when writing scenarios.
But we’ve discovered it’s easier to parse and read scenarios -- especially when you’re reading a lot of them at one sitting -- if you use the present tense for every step. So instead of mixing up the tenses, try something like this.

Present tense, active voice

Iron Chef Cucumber
Scenario: view cart
 Given Isabelle adds 2 items to her cart
 When she views her cart
 Then she sees those items in alphabetical order

present tense

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
Here we use the present tense consistently in all 3 steps.
It might not seem like big difference to you now -- and in fact it might not even seem like an improvement -- but I’ll ask you to trust me that it really does make scenarios quicker for the eye to parse, and lessens the cognitive load of reading the hundreds of scenarios that you typically need for any non-trivial application.

Present tense, active voice

Iron Chef Cucumber
When the list of ice products is sorted

When Julia sorts the list of ice products
active voice

passive voice

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
The other grammar-related best practice relates to active vs. passive voice. Think back to high school English and remember that using the active voice means saying that a subject performs an action, instead of saying that some action is performed.
Here’s an example. <NEXT>
The reason this is preferred in scenarios is the same reason it was preferred by your English teacher: active voice is more direct and more powerful, and can be easier to understand because you understand exactly who is performing the action.
It’s worth pointing out that if you use a persona as the actor in your steps, like we discussed in best practice #6, you almost can’t help but use the active voice. You can see that conversion from no persona plus passive voice in the first example here, to persona plus active voice in the second example. So that’s a nice side benefit of personas.

Iron Chef Cucumber
#8
Use consistent terminology

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
No matter what kind of software you’re building, odds are there are a ton of industry-specific terms and specialized vocabulary that your team uses to describe the features and requirements of that software, and of the problems your software solves.
For example, Cambia is in the health insurance business, so we have a lot of terms for what ordinary people would call “doctors”. Sometimes we do call them doctors, but other times we use the terms “providers” or “person providers” or “medical professionals” (And I know some of those sound funny or awkward, but they make sense in the context of our industry). Unfortunately, sometimes we use all 3 of those terms in a single scenario.
So to translate example to our artisanal ice web app, imagine if you saw a scenario like this:

Use consistent terminology

Iron Chef Cucumber
Scenario: change password
Given Kate has added round ice to her cart
When she adds another order of spherical ice to her cart
Then the cart lists both orders of ice spheres
inconsistent use of terms

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
You can see here that 1 scenario uses 3 different phrases to describe the same thing: “round ice”, “spherical ice”, and “ice spheres”.
This might seem implausible: if you’ve already used the phrase “round ice” in the GIVEN statement, doesn’t it seem unlikely that you’d suddenly start using another term in the other steps.
And yet, this happens all the time. I think there are 2 reasons. First, some people remember from English class that you’re supposed to vary your vocabulary to keep your writing from sounding repetitive or boring. Second, sometimes scenario authors cut and paste steps from other scenarios, and if they’re not paying careful attention to the text they’re pasting in, they might accidentally start using different terms elsewhere in the same scenario. So if I don’t notice that I’ve pasted in a step that uses the phrase “round ice,” I might inadvertently use the different phrase “spherical ice” in the very next step. But regardless of why these inconsistencies happen, it’s always a bad practice to bounce from one term to another within a single scenario.
Of course, it’s also best if you can use the same term across different scenarios. Now this is harder than it sounds. Cucumber scenarios are often spread across different files, sometimes in ways that make it hard to notice that two scenarios concern the same concepts, so should use the same terms for those concepts.
For example, imagine that one person writes some scenarios explaining how security ought to work, for our web app, and used the phrase “round ice” in those scenarios. Then a few weeks later someone else writes scenarios for the shopping cart feature. The second author might not know that the security-related scenarios have already introduced the term “round ice”, and that author might use the phrase “spherical ice”. Even though the second author had good intentions, inconsistent terms have now been introduced.
I don’t know of a great solution to this problem of knowing which terms are already in use. One possibility is to keep a shared document that lists key phrases that might be used in different, unrelated scenarios. In our case, that document could make clear that “round ice” should be used instead of “spherical ice” or “ice spheres”.
But it’s hard to know which terms to add to that sort of document, and it’s also hard to know when you should refer to that document, since you don’t always realize when you’re using a term that has synonyms. It’s even hard to know how to organize that kind of document to make it easily scannable, so you can see if there’s a preferred synonym for a concept. Imagine if this type of glossary had 200 entries. If you were wondering if “round ice” was the right phrase to use, where would you look to answer that question? Under R for round ice, or S for spherical ice, or I for ice spheres? Or maybe there’s another term that you hadn’t thought of?
In short, this is a tough problem to crack. The approach that’s worked best for us is simple tribal knowledge: after your team sees the term “round ice” often enough, they start to get better at noticing when someone accidentally uses an alternative term for that concept, and they can make sure it gets changed in order to preserve consistency.

Iron Chef Cucumber
#9
Extract common steps

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
Best Practice #9: extract common steps
Let me explain what I mean.
A best practice in programming is to identify bits of code that appear in multiple places within a program, and then to pull those pieces of code out, or extract them, into subroutines that can be called from anywhere in the program. This results in programs that are shorter, easier to read, and easier to maintain.
You can -- and should -- do exactly the same thing with your requirements. If there are common steps that occur over and over again, pull them out of individual scenarios and store them in one place, outside of those scenarios. Cucumber makes this painless by supporting a keyword we haven’t talked about yet, called BACKGROUND. Let’s see how it works.

Extract common steps

Iron Chef Cucumber
Scenario: log out
	Given Louisa is logged in
	When she logs out
	Then she is redirected to the log in page
Scenario: log out due to inactivity
	Given Louisa is logged in
	When she is inactive for 5 minutes
	Then she is redirected to the log in page
identical GIVEN steps

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
Say that we have two scenarios to cover requirements around logging out. Both of these scenarios have a GIVEN step that says that our persona, Louisa, is logged in.
I should note that when scenarios have identical steps like this, they are almost always GIVEN steps. This makes sense: many requirements are built on top of some common state of the system, such as being logged in, or having an empty shopping cart. That’s why Cucumber only allows you to extract common GIVEN steps, and not WHEN or THEN steps.
Going back to our scenarios, since the 2 GIVEN statements are identical, we can extract them to a single place. To do so, we use Cucumber’s BACKGROUND keyword, like this:

Extract common steps

Iron Chef Cucumber
Background:
	Given Louisa is logged in
Scenario: log out
	When she logs out
	Then she is redirected to the log in page
Scenario: log out due to inactivity
	When she is inactive for 5 minutes
	Then she is redirected to the log in page

Extracted GIVEN step

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
Here I’ve removed the identical GIVEN statements from each scenario and put a single copy of that GIVEN statement at the top, under the BACKGROUND keyword. This tells Cucumber to apply this BACKGROUND GIVEN step to both of the scenarios underneath it.
You can always add additional GIVEN statements to either of these scenarios, but the BACKGROUND GIVEN statement is considered to come first, before any other GIVEN statements. If these scenarios were turned into executable tests, the BACKGROUND GIVEN statement would be run, then any additional GIVEN steps that are included in a scenario, and then the rest of the steps in the scenario. If you’re familiar with the concepts of “setup logic” in a test, or of a “test fixture”, you can think of BACKGROUND GIVEN steps as playing the same role: they’re run before each test, putting the system into a particular state that’s needed for the tests to run.
This use of BACKGROUND isn’t really saving us any space or increasing clarity in this example, because we’re only applying it to two scenarios. But imagine that we had 50 scenarios that used the same BACKGROUND GIVEN steps, and you can see how this would make those scenarios shorter, easier to read, and MUCH simpler to maintain. If we wanted to change anything about a common GIVEN step, we’d only have to change one line under the BACKGROUND, instead of changing 50 separate lines inside the different scenarios. So if we needed to replace Louisa with a different persona, or specify exactly what credentials she uses to log in, we wouldn’t have to worry about consistently making the same change in many places: we would fix one line, and we’re done.
So: the BACKGROUND statement is your friend. I recommend you use it whenever possible. I really can’t think of any reason not to. And if you’re not using Cucumber, see if there’s a way to do something similar with whatever tool or process you do use -- there’s almost always *some* way to extract common elements from requirements.

Iron Chef Cucumber
Bonus:
Use your best judgment

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
I promised 9 best practices, but let me throw in one bonus strategy: always use your best judgment to override any of the best practices I’ve described.

Use your best judgment

Iron Chef Cucumber

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
All of these rules can and probably should be broken at certain times.

Consider the context and details of your requirements, and weigh the pros and cons of each best practice as it relates to those requirements. Usually these guidelines will help. Sometimes they won’t. Trust your instincts about what makes a requirement clear, succinct, and unambiguous.

And it goes without saying, but I’ll say it anyway: If your team has settled on a way to write requirements that’s not exactly what’s recommended here, then of course follow your team’s standards.

Requirements are crucial
Cucumber is a great tool for writing requirements
Use the 9 best practices to improve your requirements
Useful even if you don’t use Cucumber 	
Conclusion

Iron Chef Cucumber

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›
It’s time to wrap it up, so let’s summarize what we’ve covered so far. <NEXT>

Well-written requirements make or break your ability to deliver high-quality software on time. <NEXT>

Cucumber is a powerful tool not only for writing requirements, but also for sharing them with everyone on your team, and for testing them as the product code is delivered and the requirements start to be satisfied. <NEXT>

If you do use Cucumber, I hope you’ll consider these best practices when you write your own scenarios. They were the hard-won product of countless revisions of our requirements-gathering practices at Cambia. <NEXT>

And even if you don’t use Cucumber, it’ll probably be straightforward to adapt these principles for whatever tool or process you do use to capture requirements.

Either way, I hope these best practices help you and your teams as much as they’ve helped Cambia. And if you’ve developed your own set of best practices for writing requirements, I’d love to hear about them.

Thanks for listening, and thanks for your time!

template

Iron Chef Cucumber

Iron Chef Cucumber

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›

Palette

Prefer use of Calibri font, with body font size being no smaller than 18.

Iron Chef Cucumber

#PNSQC2020

Paper Title/personalized #hashtags here
Company
Or Personal
Logo/Name
Here
‹#›

image2.png

image4.png

image1.png

image3.png

image6.png

image8.png

image7.png

image5.jpg

